Skip to main content

Analyzing the Role of the P2X7 Receptor in Epilepsy

  • Protocol
  • First Online:
The P2X7 Receptor

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2510))

Abstract

Purinergic signaling is increasingly recognized to play a role during the generation of hyperexcitable networks in the brain. Among the purinergic receptors, the ionotropic ATP-gated P2X7 receptor has attracted particular attention as a possible drug target for epilepsy. P2X7 receptor expression is increased in the brain of experimental models of epilepsy and in patients and, P2X7 receptor antagonism modulates seizure severity and epilepsy development. To date, studies analyzing the role of the P2X7 receptor during epilepsy have mainly focused on temporal lobe epilepsy, the most common form of acquired epilepsy in adults which is particularly prone to drug refractoriness.

Animal models of seizures and epilepsy are an essential tool in the identification of novel anticonvulsive and antiepileptogenic drug targets and much data demonstrating a role for the P2X7 receptor during epilepsy have been obtained by using these models. The aim of the present book chapter is to provide a detailed description of two commonly used mouse models of temporal lobe epilepsy, which are the intra-amygdala kainic acid model of status epilepticus and the controlled cortical impact model of traumatic brain injury. This chapter concludes with a brief description of how these models can be used to investigate the impact of targeting the P2X7 receptor on acute seizures, epilepsy development and established epilepsy .

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Moshe SL, Perucca E, Ryvlin P, Tomson T (2015) Epilepsy: new advances. Lancet 385(9971):884–898. https://doi.org/10.1016/S0140-6736(14)60456-6

    Article  PubMed  Google Scholar 

  2. Thijs RD, Surges R, O’Brien TJ, Sander JW (2019) Epilepsy in adults. Lancet 393(10172):689–701. https://doi.org/10.1016/S0140-6736(18)32596-0

    Article  PubMed  Google Scholar 

  3. Scheffer IE, Berkovic S, Capovilla G, Connolly MB, French J, Guilhoto L, Hirsch E, Jain S, Mathern GW, Moshe SL, Nordli DR, Perucca E, Tomson T, Wiebe S, Zhang YH, Zuberi SM (2017) ILAE classification of the epilepsies: position paper of the ILAE Commission for Classification and Terminology. Epilepsia 58(4):512–521. https://doi.org/10.1111/epi.13709

    Article  PubMed  PubMed Central  Google Scholar 

  4. Klein P, Dingledine R, Aronica E, Bernard C, Blumcke I, Boison D, Brodie MJ, Brooks-Kayal AR, Engel J Jr, Forcelli PA, Hirsch LJ, Kaminski RM, Klitgaard H, Kobow K, Lowenstein DH, Pearl PL, Pitkanen A, Puhakka N, Rogawski MA, Schmidt D, Sillanpaa M, Sloviter RS, Steinhauser C, Vezzani A, Walker MC, Loscher W (2018) Commonalities in epileptogenic processes from different acute brain insults: do they translate? Epilepsia 59(1):37–66. https://doi.org/10.1111/epi.13965

    Article  CAS  PubMed  Google Scholar 

  5. Chang BS, Lowenstein DH (2003) Epilepsy. N Engl J Med 349(13):1257–1266. https://doi.org/10.1056/NEJMra022308

    Article  PubMed  Google Scholar 

  6. Bialer M, White HS (2010) Key factors in the discovery and development of new antiepileptic drugs. Nat Rev Drug Discov 9(1):68–82. https://doi.org/10.1038/nrd2997

    Article  CAS  PubMed  Google Scholar 

  7. Vezzani A, Bartfai T, Bianchi M, Rossetti C, French J (2011) Therapeutic potential of new antiinflammatory drugs. Epilepsia 52(Suppl 8):67–69. https://doi.org/10.1111/j.1528-1167.2011.03242.x

    Article  CAS  PubMed  Google Scholar 

  8. Vezzani A, Friedman A, Dingledine RJ (2013) The role of inflammation in epileptogenesis. Neuropharmacology 69:16–24. https://doi.org/10.1016/j.neuropharm.2012.04.004

    Article  CAS  PubMed  Google Scholar 

  9. Monif M, Reid CA, Powell KL, Smart ML, Williams DA (2009) The P2X7 receptor drives microglial activation and proliferation: a trophic role for P2X7R pore. J Neurosci 29(12):3781–3791. https://doi.org/10.1523/JNEUROSCI.5512-08.2009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Sperlagh B, Illes P (2014) P2X7 receptor: an emerging target in central nervous system diseases. Trends Pharmacol Sci 35(10):537–547. https://doi.org/10.1016/j.tips.2014.08.002

    Article  CAS  PubMed  Google Scholar 

  11. Kopp R, Krautloher A, Ramirez-Fernandez A, Nicke A (2019) P2X7 interactions and signaling—making head or tail of it. Front Mol Neurosci 12:183. https://doi.org/10.3389/fnmol.2019.00183

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Surprenant A, Rassendren F, Kawashima E, North RA, Buell G (1996) The cytolytic P2Z receptor for extracellular ATP identified as a P2X receptor (P2X7). Science 272(5262):735–738. https://doi.org/10.1126/science.272.5262.735

    Article  CAS  PubMed  Google Scholar 

  13. Beamer E, Conte G, Engel T (2019) ATP release during seizures—a critical evaluation of the evidence. Brain Res Bull 151:65–73. https://doi.org/10.1016/j.brainresbull.2018.12.021

    Article  CAS  PubMed  Google Scholar 

  14. Dona F, Ulrich H, Persike DS, Conceicao IM, Blini JP, Cavalheiro EA, Fernandes MJ (2009) Alteration of purinergic P2X4 and P2X7 receptor expression in rats with temporal-lobe epilepsy induced by pilocarpine. Epilepsy Res 83(2–3):157–167. https://doi.org/10.1016/j.eplepsyres.2008.10.008

    Article  CAS  PubMed  Google Scholar 

  15. Jimenez-Pacheco A, Mesuret G, Sanz-Rodriguez A, Tanaka K, Mooney C, Conroy R, Miras-Portugal MT, Diaz-Hernandez M, Henshall DC, Engel T (2013) Increased neocortical expression of the P2X7 receptor after status epilepticus and anticonvulsant effect of P2X7 receptor antagonist A-438079. Epilepsia 54(9):1551–1561. https://doi.org/10.1111/epi.12257

    Article  CAS  PubMed  Google Scholar 

  16. Jimenez-Pacheco A, Diaz-Hernandez M, Arribas-Blazquez M, Sanz-Rodriguez A, Olivos-Ore LA, Artalejo AR, Alves M, Letavic M, Miras-Portugal MT, Conroy RM, Delanty N, Farrell MA, O’Brien DF, Bhattacharya A, Engel T, Henshall DC (2016) Transient P2X7 receptor antagonism produces lasting reductions in spontaneous seizures and gliosis in experimental temporal lobe epilepsy. J Neurosci 36(22):5920–5932. https://doi.org/10.1523/JNEUROSCI.4009-15.2016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Engel T, Jimenez-Pacheco A, Miras-Portugal MT, Diaz-Hernandez M, Henshall DC (2012) P2X7 receptor in epilepsy; role in pathophysiology and potential targeting for seizure control. Int J Physiol Pathophysiol Pharmacol 4(4):174–187

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Kim JE, Kang TC (2011) The P2X7 receptor-pannexin-1 complex decreases muscarinic acetylcholine receptor-mediated seizure susceptibility in mice. J Clin Invest 121(5):2037–2047. https://doi.org/10.1172/JCI44818

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Rozmer K, Gao P, Araujo MGL, Khan MT, Liu J, Rong W, Tang Y, Franke H, Krugel U, Fernandes MJS, Illes P (2017) Pilocarpine-induced status epilepticus increases the sensitivity of P2X7 and P2Y1 receptors to nucleotides at neural progenitor cells of the juvenile rodent hippocampus. Cereb Cortex 27(7):3568–3585. https://doi.org/10.1093/cercor/bhw178

    Article  PubMed  Google Scholar 

  20. Amhaoul H, Ali I, Mola M, Van Eetveldt A, Szewczyk K, Missault S, Bielen K, Kumar-Singh S, Rech J, Lord B, Ceusters M, Bhattacharya A, Dedeurwaerdere S (2016) P2X7 receptor antagonism reduces the severity of spontaneous seizures in a chronic model of temporal lobe epilepsy. Neuropharmacology 105:175–185. https://doi.org/10.1016/j.neuropharm.2016.01.018

    Article  CAS  PubMed  Google Scholar 

  21. Loscher W (2017) Animal models of seizures and epilepsy: past, present, and future role for the discovery of antiseizure drugs. Neurochem Res 42(7):1873–1888. https://doi.org/10.1007/s11064-017-2222-z

    Article  CAS  PubMed  Google Scholar 

  22. Kandratavicius L, Balista PA, Lopes-Aguiar C, Ruggiero RN, Umeoka EH, Garcia-Cairasco N, Bueno-Junior LS, Leite JP (2014) Animal models of epilepsy: use and limitations. Neuropsychiatr Dis Treat 10:1693–1705. https://doi.org/10.2147/NDT.S50371

    Article  PubMed  PubMed Central  Google Scholar 

  23. Mouri G, Jimenez-Mateos E, Engel T, Dunleavy M, Hatazaki S, Paucard A, Matsushima S, Taki W, Henshall DC (2008) Unilateral hippocampal CA3-predominant damage and short latency epileptogenesis after intra-amygdala microinjection of kainic acid in mice. Brain Res 1213:140–151. https://doi.org/10.1016/j.brainres.2008.03.061

    Article  CAS  PubMed  Google Scholar 

  24. Mao X, Terpolilli NA, Wehn A, Cheng S, Hellal F, Liu B, Seker B, Plesnila N (2020) Progressive histopathological damage occurring up to one year after experimental traumatic brain injury is associated with cognitive decline and depression-like behavior. J Neurotrauma 37(11):1331–1341. https://doi.org/10.1089/neu.2019.6510

    Article  PubMed  Google Scholar 

  25. Schauwecker PE (2011) The relevance of individual genetic background and its role in animal models of epilepsy. Epilepsy Res 97(1–2):1–11. https://doi.org/10.1016/j.eplepsyres.2011.09.005

    Article  PubMed  PubMed Central  Google Scholar 

  26. Araki T, Simon RP, Taki W, Lan JQ, Henshall DC (2002) Characterization of neuronal death induced by focally evoked limbic seizures in the C57BL/6 mouse. J Neurosci Res 69(5):614–621. https://doi.org/10.1002/jnr.10356

    Article  CAS  PubMed  Google Scholar 

  27. Shinoda S, Araki T, Lan JQ, Schindler CK, Simon RP, Taki W, Henshall DC (2004) Development of a model of seizure-induced hippocampal injury with features of programmed cell death in the BALB/c mouse. J Neurosci Res 76(1):121–128. https://doi.org/10.1002/jnr.20064

    Article  CAS  PubMed  Google Scholar 

  28. Conte G, Parras A, Alves M, Olla I, De Diego-Garcia L, Beamer E, Alalqam R, Ocampo A, Mendez R, Henshall DC, Lucas JJ, Engel T (2020) High concordance between hippocampal transcriptome of the mouse intra-amygdala kainic acid model and human temporal lobe epilepsy. Epilepsia 61(12):2795–2810. https://doi.org/10.1111/epi.16714

    Article  CAS  PubMed  Google Scholar 

  29. Engel T, Gomez-Villafuertes R, Tanaka K, Mesuret G, Sanz-Rodriguez A, Garcia-Huerta P, Miras-Portugal MT, Henshall DC, Diaz-Hernandez M (2012) Seizure suppression and neuroprotection by targeting the purinergic P2X7 receptor during status epilepticus in mice. FASEB J 26(4):1616–1628. https://doi.org/10.1096/fj.11-196089

    Article  CAS  PubMed  Google Scholar 

  30. Jimenez-Mateos EM, Arribas-Blazquez M, Sanz-Rodriguez A, Concannon C, Olivos-Ore LA, Reschke CR, Mooney CM, Mooney C, Lugara E, Morgan J, Langa E, Jimenez-Pacheco A, Silva LF, Mesuret G, Boison D, Miras-Portugal MT, Letavic M, Artalejo AR, Bhattacharya A, Diaz-Hernandez M, Henshall DC, Engel T (2015) microRNA targeting of the P2X7 purinoceptor opposes a contralateral epileptogenic focus in the hippocampus. Sci Rep 5:17486. https://doi.org/10.1038/srep17486

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Jimenez-Mateos EM, Engel T, Merino-Serrais P, McKiernan RC, Tanaka K, Mouri G, Sano T, O’Tuathaigh C, Waddington JL, Prenter S, Delanty N, Farrell MA, O’Brien DF, Conroy RM, Stallings RL, DeFelipe J, Henshall DC (2012) Silencing microRNA-134 produces neuroprotective and prolonged seizure-suppressive effects. Nat Med 18(7):1087–1094. https://doi.org/10.1038/nm.2834

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Mesuret G, Engel T, Hessel EV, Sanz-Rodriguez A, Jimenez-Pacheco A, Miras-Portugal MT, Diaz-Hernandez M, Henshall DC (2014) P2X7 receptor inhibition interrupts the progression of seizures in immature rats and reduces hippocampal damage. CNS Neurosci Ther 20(6):556–564. https://doi.org/10.1111/cns.12272

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Betjemann JP, Lowenstein DH (2015) Status epilepticus in adults. Lancet Neurol 14(6):615–624. https://doi.org/10.1016/S1474-4422(15)00042-3

    Article  PubMed  Google Scholar 

  34. Welzel L, Schidlitzki A, Twele F, Anjum M, Loscher W (2020) A face-to-face comparison of the intra-amygdala and intrahippocampal kainate mouse models of mesial temporal lobe epilepsy and their utility for testing novel therapies. Epilepsia 61(1):157–170. https://doi.org/10.1111/epi.16406

    Article  CAS  PubMed  Google Scholar 

  35. Bolkvadze T, Pitkanen A (2012) Development of post-traumatic epilepsy after controlled cortical impact and lateral fluid-percussion-induced brain injury in the mouse. J Neurotrauma 29(5):789–812. https://doi.org/10.1089/neu.2011.1954

    Article  PubMed  Google Scholar 

  36. Alves M, De Diego GL, Conte G, Jimenez-Mateos EM, D’Orsi B, Sanz-Rodriguez A, Prehn JHM, Henshall DC, Engel T (2019) Context-specific switch from anti- to pro-epileptogenic function of the P2Y1 receptor in experimental epilepsy. J Neurosci 39(27):5377–5392. https://doi.org/10.1523/JNEUROSCI.0089-19.2019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Fischer W, Franke H, Krugel U, Muller H, Dinkel K, Lord B, Letavic MA, Henshall DC, Engel T (2016) Critical evaluation of P2X7 receptor antagonists in selected seizure models. PLoS One 11(6):e0156468. https://doi.org/10.1371/journal.pone.0156468

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Alves M, Kenny A, de Leo G, Beamer EH, Engel T (2019) Tau phosphorylation in a mouse model of temporal lobe epilepsy. Front Aging Neurosci 11:308. https://doi.org/10.3389/fnagi.2019.00308

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Zhao F, Kang H, You L, Rastogi P, Venkatesh D, Chandra M (2014) Neuropsychological deficits in temporal lobe epilepsy: a comprehensive review. Ann Indian Acad Neurol 17(4):374–382. https://doi.org/10.4103/0972-2327.144003

    Article  PubMed  PubMed Central  Google Scholar 

  40. Moran C, Sanz-Rodriguez A, Jimenez-Pacheco A, Martinez-Villareal J, McKiernan RC, Jimenez-Mateos EM, Mooney C, Woods I, Prehn JH, Henshall DC, Engel T (2013) Bmf upregulation through the AMP-activated protein kinase pathway may protect the brain from seizure-induced cell death. Cell Death Dis 4:e606. https://doi.org/10.1038/cddis.2013.136

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Beamer EH, Jurado-Arjona J, Jimenez-Mateos EM, Morgan J, Reschke CR, Kenny A, de Leo G, Olivos-Ore LA, Arribas-Blazquez M, Madden SF, Merchan-Rubira J, Delanty N, Farrell MA, O’Brien DF, Avila J, Diaz-Hernandez M, Miras-Portugal MT, Artalejo AR, Hernandez F, Henshall DC, Engel T (2018) MicroRNA-22 controls aberrant neurogenesis and changes in neuronal morphology after status epilepticus. Front Mol Neurosci 11:442. https://doi.org/10.3389/fnmol.2018.00442

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Lin JJ, Mula M, Hermann BP (2012) Uncovering the neurobehavioural comorbidities of epilepsy over the lifespan. Lancet 380(9848):1180–1192. https://doi.org/10.1016/S0140-6736(12)61455-X

    Article  PubMed  Google Scholar 

  43. Morgan J, Alves M, Conte G, Menendez-Mendez A, de Diego-Garcia L, de Leo G, Beamer E, Smith J, Nicke A, Engel T (2020) Characterization of the expression of the ATP-gated P2X7 receptor following status epilepticus and during epilepsy using a P2X7-EGFP reporter mouse. Neurosci Bull 36(11):1242–1258. https://doi.org/10.1007/s12264-020-00573-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Rubin TG, Lipton ML (2019) Sex differences in animal models of traumatic brain injury. J Exp Neurosci 13:1179069519844020. https://doi.org/10.1177/1179069519844020

    Article  PubMed  PubMed Central  Google Scholar 

  45. Hunt RF, Scheff SW, Smith BN (2009) Posttraumatic epilepsy after controlled cortical impact injury in mice. Exp Neurol 215(2):243–252. https://doi.org/10.1016/j.expneurol.2008.10.005

    Article  PubMed  Google Scholar 

  46. Hunt RF, Scheff SW, Smith BN (2010) Regionally localized recurrent excitation in the dentate gyrus of a cortical contusion model of posttraumatic epilepsy. J Neurophysiol 103(3):1490–1500. https://doi.org/10.1152/jn.00957.2009

    Article  PubMed  PubMed Central  Google Scholar 

  47. Nelson DW, Gregg RJ, Kort ME, Perez-Medrano A, Voight EA, Wang Y, Grayson G, Namovic MT, Donnelly-Roberts DL, Niforatos W, Honore P, Jarvis MF, Faltynek CR, Carroll WA (2006) Structure-activity relationship studies on a series of novel, substituted 1-benzyl-5-phenyltetrazole P2X7 antagonists. J Med Chem 49(12):3659–3666. https://doi.org/10.1021/jm051202e

    Article  CAS  PubMed  Google Scholar 

  48. Donnelly-Roberts DL, Namovic MT, Han P, Jarvis MF (2009) Mammalian P2X7 receptor pharmacology: comparison of recombinant mouse, rat and human P2X7 receptors. Br J Pharmacol 157(7):1203–1214. https://doi.org/10.1111/j.1476-5381.2009.00233.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was supported by funding from Science Foundation Ireland (17/CDA/4708), 2020 Government of Ireland Postdoctoral Fellowship Scheme (GOIPD/2020/865 and GOIPD/2020/806), and H2020 Marie Skłowdowksa-Curie Actions Individual Fellowship (project ID 796600).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tobias Engel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Alves, M., de Diego-Garcia, L., Engel, T. (2022). Analyzing the Role of the P2X7 Receptor in Epilepsy. In: Nicke, A. (eds) The P2X7 Receptor. Methods in Molecular Biology, vol 2510. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2384-8_21

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2384-8_21

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2383-1

  • Online ISBN: 978-1-0716-2384-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics