Skip to main content

Purification of Cdk-CyclinB-Kinase–Targeted Phosphopeptides from Nuclear Envelope

  • Protocol
  • First Online:
The Nuclear Pore Complex

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2502))

Abstract

We describe a method for rapid identification of protein kinase substrates within the nuclear envelope. Open mitosis in higher eukaryotes is characterized by nuclear envelope breakdown (NEBD) concerted with disassembly of the nuclear lamina and dissociation of nuclear pore complexes (NPCs) into individual subcomplexes. Evidence indicates that reversible phosphorylation events largely drive this mitotic NEBD. These posttranslational modifications likely disrupt structurally significant interactions among nucleoporins (Nups), lamina and membrane proteins of the nuclear envelope (NE). It is therefore critical to determine when and where these substrates are phosphorylated. One likely regulator is the mitotic kinase: Cdk1-Cyclin B. We employed an “analog-sensitive” Cdk1 to bio-orthogonally and uniquely label its substrates in the NE with a phosphate analog tag. Subsequently, peptides covalently modified with the phosphate analogs are rapidly purified by a tag-specific covalent capture and release methodology. In this manner, we were able to confirm the identity of known Cdk1 targets in the NE and discover additional candidates for regulation by mitotic phosphorylation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Gall JG (1954) Observations on the nuclear membrane with the electron microscope. Exp Cell Res 7(1):197–200

    Article  CAS  Google Scholar 

  2. Gall JG (1967) Octagonal nuclear pores. J Cell Biol 32(2):391–399

    Article  CAS  Google Scholar 

  3. Stewart M (2007) Molecular mechanism of the nuclear protein import cycle. Nat Rev Mol Cell Biol 8(3):195–208

    Article  CAS  Google Scholar 

  4. Lin DH, Hoelz A (2019) The structure of the nuclear pore complex (an update). Annu Rev Biochem 88:725–783

    Article  CAS  Google Scholar 

  5. Mackmull MT, Klaus B, Heinze I, Chokkalingam M, Beyer A, Russell RB et al (2017) Landscape of nuclear transport receptor cargo specificity. Mol Syst Biol 13(12):962

    Article  Google Scholar 

  6. Ori A, Banterle N, Iskar M, Andres-Pons A, Escher C, Khanh Bui H et al (2013) Cell type-specific nuclear pores: a case in point for context-dependent stoichiometry of molecular machines. Mol Syst Biol 9:648

    Article  CAS  Google Scholar 

  7. Cronshaw JM, Krutchinsky AN, Zhang W, Chait BT, Matunis MJ (2002) Proteomic analysis of the mammalian nuclear pore complex. J Cell Biol 158(5):915–927

    Article  CAS  Google Scholar 

  8. Rout MP, Aitchison JD, Suprapto A, Hjertaas K, Zhao Y, Chait BT (2000) The yeast nuclear pore complex: composition, architecture, and transport mechanism. J Cell Biol 148(4):635–651

    Article  CAS  Google Scholar 

  9. Beck M, Lucic V, Forster F, Baumeister W, Medalia O (2007) Snapshots of nuclear pore complexes in action captured by cryo-electron tomography. Nature 449(7162):611–615

    Article  CAS  Google Scholar 

  10. Bui KH, von Appen A, Diguilio AL, Ori A, Sparks L, Mackmull MT et al (2013) Integrated structural analysis of the human nuclear pore complex scaffold. Cell 155(6):1233–1243

    Article  CAS  Google Scholar 

  11. Kosinski J, Mosalaganti S, von Appen A, Teimer R, DiGuilio AL, Wan W et al (2016) Molecular architecture of the inner ring scaffold of the human nuclear pore complex. Science 352(6283):363–365

    Article  CAS  Google Scholar 

  12. von Appen A, Kosinski J, Sparks L, Ori A, DiGuilio AL, Vollmer B et al (2015) In situ structural analysis of the human nuclear pore complex. Nature 526(7571):140–143

    Article  Google Scholar 

  13. Lusk CP, Blobel G, King MC (2007) Highway to the inner nuclear membrane: rules for the road. Nat Rev Mol Cell Biol 8(5):414–420

    Article  CAS  Google Scholar 

  14. Moir RD, Spann TP, Lopez-Soler RI, Yoon M, Goldman AE, Khuon S et al (2000) Review: the dynamics of the nuclear lamins during the cell cycle-- relationship between structure and function. J Struct Biol 129(2–3):324–334

    Article  CAS  Google Scholar 

  15. Moir RD, Yoon M, Khuon S, Goldman RD (2000) Nuclear lamins A and B1: different pathways of assembly during nuclear envelope formation in living cells. J Cell Biol 151(6):1155–1168

    Article  CAS  Google Scholar 

  16. Hampoelz B, Andres-Pons A, Kastritis P, Beck M (2019) Structure and assembly of the nuclear pore complex. Annu Rev Biophys 48:515–536

    Article  CAS  Google Scholar 

  17. Laurell E, Beck K, Krupina K, Theerthagiri G, Bodenmiller B, Horvath P et al (2011) Phosphorylation of Nup98 by multiple kinases is crucial for NPC disassembly during mitotic entry. Cell 144(4):539–550

    Article  CAS  Google Scholar 

  18. Olsen JV, Vermeulen M, Santamaria A, Kumar C, Miller ML, Jensen LJ et al (2010) Quantitative phosphoproteomics reveals widespread full phosphorylation site occupancy during mitosis. Sci Signal 3(104):ra3

    Article  Google Scholar 

  19. Diguilio AL, Glavy JS (2013) Depletion of nucleoporins from HeLa nuclear pore complexes to facilitate the production of ghost pores for in vitro reconstitution. Cytotechnology 65(4):469–479

    Article  CAS  Google Scholar 

  20. Glavy JS, Krutchinsky AN, Cristea IM, Berke IC, Boehmer T, Blobel G et al (2007) Cell-cycle-dependent phosphorylation of the nuclear pore Nup107-160 subcomplex. Proc Natl Acad Sci U S A 104(10):3811–3816

    Article  CAS  Google Scholar 

  21. Onischenko EA, Gubanova NV, Kiseleva EV, Hallberg E (2005) Cdk1 and okadaic acid-sensitive phosphatases control assembly of nuclear pore complexes in drosophila embryos. Mol Biol Cell 16(11):5152–5162

    Article  CAS  Google Scholar 

  22. Blethrow JD, Glavy JS, Morgan DO, Shokat KM (2008) Covalent capture of kinase-specific phosphopeptides reveals Cdk1-cyclin B substrates. Proc Natl Acad Sci U S A 105(5):1442–1447

    Article  CAS  Google Scholar 

  23. Polson AG, Huang L, Lukac DM, Blethrow JD, Morgan DO, Burlingame AL et al (2001) Kaposi's sarcoma-associated herpesvirus K-bZIP protein is phosphorylated by cyclin-dependent kinases. J Virol 75(7):3175–3184

    Article  CAS  Google Scholar 

  24. Blethrow J, Zhang C, Shokat KM, Weiss EL (2004) Design and use of analog-sensitive protein kinases. Curr Protoc Mol Biol Chapter 18:Unit 18.1

    Google Scholar 

  25. Blobel G, Potter VR (1966) Nuclei from rat liver: isolation method that combines purity with high yield. Science 154(757):1662–1665

    Article  CAS  Google Scholar 

  26. Bornens M, Courvalin JC (1978) Isolation of nuclear envelopes with polyanions. J Cell Biol 76(1):191–206

    Article  CAS  Google Scholar 

  27. Dwyer N, Blobel G (1976) A modified procedure for the isolation of a pore complex-lamina fraction from rat liver nuclei. J Cell Biol 70(3):581–591

    Article  CAS  Google Scholar 

  28. Matunis MJ (2006) Isolation and fractionation of rat liver nuclear envelopes and nuclear pore complexes. Methods 39(4):277–283

    Article  CAS  Google Scholar 

  29. Ori A, Andres-Pons A, Beck M (2014) The use of targeted proteomics to determine the stoichiometry of large macromolecular assemblies. Methods Cell Biol 122:117–146

    Article  CAS  Google Scholar 

  30. Allen JJ, Lazerwith SE, Shokat KM (2005) Bio-orthogonal affinity purification of direct kinase substrates. J Am Chem Soc 127(15):5288–5289

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The corresponding author would first like to thank the late Günter Blobel for his mentorship and encouragement. Also, we would like to Andrew Krutchinsky and Kevan Shokat for their support. We thank Thomas Cattabiani for critical reading of the manuscript. This work was supported in part by the Howard Hughes Medical Institute. J.S.G. was supported by the National Institutes of Health Individual National Research Service Award 5F32GN20520 and NIGMS-7R15GM119118.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joseph S. Glavy .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Blethrow, J.D., DiGuilio, A.L., Glavy, J.S. (2022). Purification of Cdk-CyclinB-Kinase–Targeted Phosphopeptides from Nuclear Envelope. In: Goldberg, M.W. (eds) The Nuclear Pore Complex. Methods in Molecular Biology, vol 2502. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2337-4_18

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2337-4_18

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2336-7

  • Online ISBN: 978-1-0716-2337-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics