Skip to main content

Optogenetic Control of Human Stem Cell-Derived Neurons

  • Protocol
  • First Online:
Rhodopsin

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2501))

Abstract

Spontaneous and optogenetically evoked activities of human induced pluripotent stem cell (hiPSC)-derived neurons can be assessed by patch clamp and multi-electrode array (MEA) electrophysiology. Optogenetic activation of these human neurons facilitates the characterization of their functional properties at the single neuron and circuit level. Here we showcase the preparation of hiPSC-derived neurons expressing optogenetic actuators, in vitro optogenetic stimulation and simultaneous functional recordings using patch clamp and MEA electrophysiology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Busskamp V, Lewis NE, Guye P et al (2014) Rapid neurogenesis through transcriptional activation in human stem cells. Mol Syst Biol 10:760. https://doi.org/10.15252/msb.20145508

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Taylor CJ, Bolton EM, Bradley JA (2011) Immunological considerations for embryonic and induced pluripotent stem cell banking. Philos Trans R Soc Lond Ser B Biol Sci 366:2312–2322. https://doi.org/10.1098/rstb.2011.0030

    Article  CAS  Google Scholar 

  3. Lam RS, Töpfer FM, Wood PG et al (2017) Functional maturation of human stem cell-derived neurons in long-term cultures. PLoS One 12:e0169506

    Article  Google Scholar 

  4. Silva MC, Haggarty SJ (2019) Human pluripotent stem cell-derived models and drug screening in CNS precision medicine. Ann N Y Acad Sci 1471(1):18–56. https://doi.org/10.1111/nyas.14012

    Article  PubMed  PubMed Central  Google Scholar 

  5. Engle SJ, Blaha L, Kleiman RJ (2018) Best practices for translational disease modeling using human iPSC-derived neurons. Neuron 100:783–797. https://doi.org/10.1016/j.neuron.2018.10.033

    Article  CAS  PubMed  Google Scholar 

  6. Klapper SD, Sauter EJ, Swiersy A et al (2017) On-demand optogenetic activation of human stem-cell-derived neurons. Sci Rep 7:14450. https://doi.org/10.1038/s41598-017-14827-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Habibey R, Latifi S, Mousavi H et al (2017) A multielectrode array microchannel platform reveals both transient and slow changes in axonal conduction velocity. Sci Rep 7(1):8558. https://doi.org/10.1038/s41598-017-09033-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Habibey R, Sharma K, Swiersy A, Busskamp V (2020) Optogenetics for neural transplant manipulation and functional analysis. Biochem Biophys Res Commun 527(2):343–349. https://doi.org/10.1016/j.bbrc.2020.01.141

    Article  CAS  PubMed  Google Scholar 

  9. Zhang K, Cui B (2015) Optogenetic control of intracellular signaling pathways. Trends Biotechnol 33:92–100. https://doi.org/10.1016/j.tibtech.2014.11.007

    Article  CAS  PubMed  Google Scholar 

  10. Klapoetke NC, Murata Y, Kim SS et al (2014) Independent optical excitation of distinct neural populations. Nat Methods 11:338–346. https://doi.org/10.1038/nmeth.2836

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Fenno L, Yizhar O, Deisseroth K (2011) The development and application of optogenetics. Annu Rev Neurosci 34:389–412. https://doi.org/10.1146/annurev-neuro-061010-113817

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Hooks BM (2018) Dual-channel photostimulation for independent excitation of two populations. Curr Protoc Neurosci 85:e52. https://doi.org/10.1002/cpns.52

    Article  PubMed  PubMed Central  Google Scholar 

  13. Latifi S, Mitchell S, Habibey R et al (2020) Neuronal network topology indicates distinct recovery processes after stroke. Cereb Cortex 30(12):6363–6375. https://doi.org/10.1093/cercor/bhaa191

    Article  PubMed  PubMed Central  Google Scholar 

  14. Daadi MM, Klausner JQ, Bajar B et al (2016) Optogenetic stimulation of neural grafts enhances neurotransmission and downregulates the inflammatory response in experimental stroke model. Cell Transplant 25:1371–1380. https://doi.org/10.3727/096368915X688533

    Article  PubMed  Google Scholar 

  15. Weitz AJ, Lee JH (2016) Probing neural transplant networks in vivo with optogenetics and optogenetic fMRI. Stem Cells Int 2016:8612751. https://doi.org/10.1155/2016/8612751

    Article  PubMed  PubMed Central  Google Scholar 

  16. Weick JP, Johnson MA, Skroch SP et al (2010) Functional control of transplantable human ESC-derived neurons via optogenetic targeting. Stem Cells 28:2008–2016. https://doi.org/10.1002/stem.514

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Steinbeck JA, Choi SJ, Mrejeru A et al (2015) Optogenetics enables functional analysis of human embryonic stem cell-derived grafts in a Parkinson’s disease model. Nat Biotechnol 33:204–209. https://doi.org/10.1038/nbt.3124

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Sauter EJ, Kutsche LK, Klapper SD, Busskamp V (2019) Induced neurons for the study of neurodegenerative and neurodevelopmental disorders. In: Ben-Yosef D, Mayshar Y (eds) Fragile-X syndrome: methods and protocols. Springer, New York, pp 101–121

    Chapter  Google Scholar 

  19. Lee S, George JH, Nagel DA et al (2019) Optogenetic control of iPS cell-derived neurons in 2D and 3D culture systems using channelrhodopsin-2 expression driven by the synapsin-1 and calcium-calmodulin kinase II promoters. J Tissue Eng Regen Med 13:369–384. https://doi.org/10.1002/term.2786

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Renault R, Sukenik N, Descroix S et al (2015) Combining microfluidics, optogenetics and calcium imaging to study neuronal communication in vitro. PLoS One 10:e0120680

    Article  Google Scholar 

  21. Schmieder F, Habibey R, Büttner L, et al (2019) Optogenetic investigation of in vitro human iPSC-derived neuronal networks (conference presentation). In: Proceedings of SPIE

    Google Scholar 

  22. Schmieder F, Klapper DS, Koukourakis N et al (2018) Optogenetic stimulation of human neural networks using fast ferroelectric spatial light modulator-based holographic illumination. Appl Sci 8(7):1180

    Article  Google Scholar 

  23. Kaech S, Banker G (2006) Culturing hippocampal neurons. Nat Protoc 1:2406–2415. https://doi.org/10.1038/nprot.2006.356

    Article  CAS  PubMed  Google Scholar 

  24. Molleman A (2003) Patch clamping: an introductory guide to patch clamp electrophysiology. Wiley, New York

    Google Scholar 

  25. Habibey R, Golabchi A, Blau A (2015) Microchannel scaffolds for neural signal acquisition and analysis. In: Londral AR, Encarnação P, Rovira JLP (eds) Neurotechnology, electronics, and informatics. Springer International Publishing, Cham, pp 47–64

    Chapter  Google Scholar 

  26. Maybeck V, Schnitker J, Li W et al (2016) An evaluation of extracellular MEA versus optogenetic stimulation of cortical neurons. Biomed Phys Eng Express 2:55017. https://doi.org/10.1088/2057-1976/2/5/055017

    Article  Google Scholar 

  27. Wilk N, Habibey R, Golabchi A et al (2016) Selective comparison of gelling agents as neural cell culture matrices for long-term microelectrode array electrophysiology. OCL 23(1):D117. https://doi.org/10.1051/ocl/2015068

    Article  Google Scholar 

  28. Habibey R, Golabchi A, Latifi S et al (2015) A microchannel device tailored to laser axotomy and long-term microelectrode array electrophysiology of functional regeneration. Lab Chip 15(24):4578–4590. https://doi.org/10.1039/c5lc01027f

    Article  CAS  PubMed  Google Scholar 

  29. Latifi S, Tamayol A, Habibey R et al (2016) Natural lecithin promotes neural network complexity and activity. Sci Rep 6:25777. https://doi.org/10.1038/srep25777

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Saalfrank D, Konduri AK, Latifi S et al (2015) Incubator-independent cell-culture perfusion platform for continuous long-term microelectrode array electrophysiology and time-lapse imaging. R Soc Open Sci 2(6):150031. https://doi.org/10.1098/rsos.150031

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Yizhar O, Fenno LE, Davidson TJ et al (2011) Optogenetics in neural systems. Neuron 71:9–34. https://doi.org/10.1016/j.neuron.2011.06.004

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The Volkswagen Foundation (Freigeist—A110720), the European Research Council (ERC-StG 678071—ProNeurons), and the Deutsche Forschungsgemeinschaft (EXC-2151-390873048—Cluster of Excellence—ImmunoSensation2 at the University of Bonn and SPP2127) support VB. JS acknowledges the support by the Joachim Herz Stiftung.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Volker Busskamp .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Habibey, R., Striebel, J., Sharma, K., Busskamp, V. (2022). Optogenetic Control of Human Stem Cell-Derived Neurons. In: Gordeliy, V. (eds) Rhodopsin. Methods in Molecular Biology, vol 2501. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2329-9_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2329-9_17

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2328-2

  • Online ISBN: 978-1-0716-2329-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics