Skip to main content

Determining Copper and Zinc Content in Superoxide Dismutase Using Electron Capture Dissociation Under Native Spray Conditions

  • Protocol
  • First Online:
Proteoform Identification

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2500))

Abstract

Localizing metal binding to specific sites in proteins remains a challenging analytical problem in vitro and in vivo. Although metal binding can be maintained by “native” electrospray ionization with intact proteins for quantitation by mass spectrometry, subsequent fragmentation of proteins with slow-heating methods like collision-induced dissociation (CID) can scramble and detach metals. In contrast, electron capture dissociation (ECD) fragmentation produces highly localized bond cleavage that is well known to preserve posttranslational modifications. We show how a newly available ECD tool that can be retrofitted on standard QTOF mass spectrometers allows the sites of copper and zinc binding to be localized in the antioxidant enzyme Cu, Zn superoxide dismutase (SOD1). The loss of zinc from Cu, Zn SOD1 has been shown to induce motor neuron death and could have a causal role in the fatal neurodegenerative disease, amyotrophic lateral sclerosis (ALS). The methods described enable copper loss to be distinguished from zinc using distinct ECD fragments of SOD1 and are broadly applicable to other metalloproteins.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Shi W, Chance M (2011) Metalloproteomics: forward and reverse approaches in metalloprotein structural and functional characterization. Curr Opin Chem Biol 15:144–148

    Article  Google Scholar 

  2. Valentine JS, Pantoliano MW (1981) Protein-metal ion interactions in cuprozinc protein (superoxide dismutase). In: Spiro TG (ed) Copper proteins: metal ions in biology, vol 3. John Wiley and Sons, New York, pp 291–358

    Google Scholar 

  3. Kayatekin C, Zitzewitz JA, Matthews CR (2008) Zinc binding modulates the entire folding free energy surface of human Cu,Zn superoxide dismutase. J Mol Biol 384(2):540–555

    Article  CAS  Google Scholar 

  4. Beckman JS, Estevez AG, Crow JP, Barbeito L (2001) Superoxide dismutase and the death of motoneurons in ALS. Trends Neurosci 24(11 Suppl):S15–S20

    Article  CAS  Google Scholar 

  5. Crow JP, Sampson JB, Zhuang Y, Thompson JA, Beckman JS (1997) Decreased zinc affinity of amyotrophic lateral sclerosis-associated superoxide dismutase mutants leads to enhanced catalysis of tyrosine nitration by peroxynitrite. J Neurochem 69(5):1936–1944

    Article  CAS  Google Scholar 

  6. Crow JP, Ye YZ, Strong M, Kirk M, Barnes S, Beckman JS (1997) Superoxide dismutase catalyzes nitration of tyrosines by peroxynitrite in the rod and head domains of neurofilament-L. J Neurochem 69(5):1945–1953

    Article  CAS  Google Scholar 

  7. Estévez AG, Crow JP, Sampson JB et al (1999) Induction of nitric oxide-dependent apoptosis in motor neurons by zinc-deficient superoxide dismutase. Science 286:2498–2500

    Article  Google Scholar 

  8. Sahawneh MA, Ricart KC, Roberts BR et al (2010) Cu,Zn superoxide dismutase (SOD) increases toxicity of mutant and Zn-deficient superoxide dismutase by enhancing protein stability. J Biol Chem 285(44):33885–33897

    Article  CAS  Google Scholar 

  9. Williams JR, Trias E, Beilby PR, Lopez NI et al (2016) Copper delivery to the CNS by CuATSM effectively treats motor neuron disease in SODG93A mice co-expressing the Copper-Chaperone-for-SOD. Neurobiol Dis 89:0969–9961

    Article  Google Scholar 

  10. Roberts BR, Lim NK, McAllum NK et al (2014) Oral treatment with CuII(atsm) increases mutant SOD1 in vivo but protects motor neurons and improves the phenotype of a transgenic mouse model of amyotrophic lateral sclerosis. J Neurosci 34(23):8021–8031

    Article  CAS  Google Scholar 

  11. Rhoads T, Williams J, Lopez N et al (2013) Using theoretical protein isotopic distributions to parse small-mass-difference post-translational modifications via mass spectrometry. J Am Soc Mass Spectrom 24:115–124

    Article  CAS  Google Scholar 

  12. Rhoads TW, Lopez NI, Zollinger DR et al (2011) Measuring copper and zinc superoxide dismutase from spinal cord tissue using electrospray mass spectrometry. Anal Biochem 415(1):52–58

    Article  CAS  Google Scholar 

  13. Kelleher N, Zubarev R, Bush K et al (1999) Localization of labile posttranslational modifications by electron capture dissociation: the case of γ-carboxyglutamic acid. Anal Chem 71:4250–4253

    Article  CAS  Google Scholar 

  14. Lermyte F, Everett J, Lam Y et al (2019) Metal ion binding to the amyloid β monomer studied by native top-down FTICR mass spectrometry. J Am Soc Mass Spectrom 30:2123–2134

    Article  CAS  Google Scholar 

  15. Fort K, Cramer C, Voinov V et al (2018) Exploring ECD on a benchtop Q exactive orbitrap mass spectrometer. J Proteome Res 17:926–933

    Article  CAS  Google Scholar 

  16. Beckman JS, Voinov VG, Hare M et al (2021) Improved protein and PTM characterization with a practical electron-based fragmentation on Q-TOF instruments. J Am Soc Mass Spectrom 32(8):2081–2091

    Article  CAS  Google Scholar 

  17. Syrstad E, Turecček F (2005) Toward a general mechanism of electron capture dissociation. J Am Soc Mass Spectrom 16:208–224

    Article  CAS  Google Scholar 

  18. Zubarev R, Kelleher N, McLafferty F (1998) Electron capture dissociation of multiply charged protein cations. A nonergodic process. J Am Chem Soc 120:3265–3266

    Article  CAS  Google Scholar 

  19. Voinov V, Beckman J, Deinzer M, Barofsky D (2009) Electron-capture dissociation (ECD), collision-induced dissociation (CID) and ECD/CID in a linear radio-frequency-free magnetic cell. Rapid Commun Mass Spectrom 23:3028–3030

    Article  CAS  Google Scholar 

  20. Williams J, Morrison L, Brown J et al (2020) Top-down characterization of denatured proteins and native protein complexes using electron capture dissociation implemented within a modified ion mobility-mass spectrometer. Anal Chem 92:3674–3681

    Article  CAS  Google Scholar 

  21. Butler KE, Takinami Y, Rainczuk A, Baker ES, Roberts BR (2021) Utilizing ion mobility-mass spectrometry to investigate the unfolding pathway of Cu/Zn superoxide dismutase. Front Chem 9:614595

    Article  CAS  Google Scholar 

  22. Stanford T, Bagley C, Solomon P (2016) Informed baseline subtraction of proteomic mass spectrometry data aided by a novel sliding window algorithm. Proteome Sci 7:14–19

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joseph S. Beckman .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Franklin, R., Hare, M., Beckman, J.S. (2022). Determining Copper and Zinc Content in Superoxide Dismutase Using Electron Capture Dissociation Under Native Spray Conditions. In: Sun, L., Liu, X. (eds) Proteoform Identification. Methods in Molecular Biology, vol 2500. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2325-1_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2325-1_14

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2324-4

  • Online ISBN: 978-1-0716-2325-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics