Skip to main content

VenomFlow: An Automated Bioinformatic Pipeline for Identification of Disulfide-Rich Peptides from Venom Arsenals

  • Protocol
  • First Online:
Marine Genomics

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2498))

Abstract

Animal venoms are among the most complex natural secretions known, comprising a mixture of bioactive compounds often referred to as toxins. Venom arsenals are predominately made up of cysteine-rich peptide toxins that manipulate molecular targets, such as ion channels and receptors, making these venom peptides attractive candidates for the development of therapeutics to benefit human health. With the rise of omic strategies that utilize transcriptomic, proteomic, and bioinformatic methods, we are able to identify more venom proteins and peptides than ever before. However, identification and characterization of bioactive venom peptides remains a significant challenge due to the unique chemical structure and enormous number of peptides found in each venom arsenal (upward of 200 per organism). Here, we introduce a rapid and user-friendly in silico bioinformatic pipeline for the de novo identification and characterization of raw RNAseq reads from venom glands to elucidate cysteine-rich peptides from the arsenal of venomous organisms.

Implementation: This project develops a user-friendly automated bioinformatics pipeline via a Galaxy workflow to identify novel venom peptides from raw RNAseq reads of terebrid snails. While designed for venomous terebrid snails, with minor adjustments, this pipeline can be made universal to identify secreted disulfide-rich peptide toxins from any venomous organism.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Fagerberg L, Hallström BM, Uhlén M et al (2015) Proteomics tissue-based map of the human proteome. Science 347:1260419

    Article  Google Scholar 

  2. Charpentier E, Doudna JA (2014) Genome editing. The new frontier of genome engineering with CRISPR-Cas9. Science 346:1258096

    Article  Google Scholar 

  3. Anand P, Gorson J, Jannetti S, Kelly P et al (2016) From mollusks to medicine: a Venomics approach for the discovery and characterization of therapeutics from Terebridae peptide toxins. Toxins (Basel) 8(4):117. https://doi.org/10.3390/toxins8040117

    Article  CAS  Google Scholar 

  4. Chen N, Xu S, Zhang Y et al (2018) Animal protein toxins: origins and therapeutic applications. Biophys Rep 4(5):233–242. https://doi.org/10.1007/s41048-018-0067-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Bryan J (2009) From snake venom to ACE inhibitor—the discovery and rise of captopril. Pharm J. https://doi.org/10.1211/PJ.2021.1.69712

  6. Brogan SE, Olivera BM, Safavi-Hemami H et al (2019) Pain therapeutics from cone snail venoms: from Ziconotide to novel non-opioid pathways. J Proteome 190:12–20. https://doi.org/10.1016/j.jprot.2018.05.009

    Article  CAS  Google Scholar 

  7. Holford M, Daly M, King G et al (2018) Venoms to the rescue. Science 361(6405):842–844. https://doi.org/10.1126/science.aau7761

    Article  CAS  PubMed  Google Scholar 

  8. Angell Y, Holford M, Moos WH (2018) Building on success: a bright future for peptide therapeutics. Protein Pept Lett 25(12):1044–1050. https://doi.org/10.2174/0929866525666181114155542

    Article  CAS  PubMed  Google Scholar 

  9. Holford M, Napolitano T (2018) Breakthroughs in venom peptide screening methods to advance future drug discovery. Protein Pept Lett 25(12):1137–1148. https://doi.org/10.2174/0929866525666181101103047

    Article  CAS  PubMed  Google Scholar 

  10. Olivera BM, Watkins M, Bandyopadhyay P et al (2012) Adaptive radiation of venomous marine snail lineages and the accelerated evolution of venom peptide genes. Ann N Y Acad Sci 1267:61–70. https://doi.org/10.1111/j.1749-6632.2012.06603.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Anand P, Grigoryan A, Bhuiyan MH et al (2014) Sample limited characterization of a novel disulfide-rich venom peptide toxin from Terebrid marine snail Terebra variegata. PLoS One 9(4):e94122. https://doi.org/10.1371/journal.pone.0094122

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Ramrattan G, Verdes A, Wright EM et al (2015) Molecular diversity and gene evolution of the venom arsenal of Terebridae predatory marine snails. Genome Biol Evol 7(6):1761–1778. https://doi.org/10.1093/gbe/evv104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Baker D, Batut B, Van Den Beek M et al (2018) The Galaxy platform for accessible, reproducible and collaborative biomedical analyses: 2018 update. Nucleic Acids Res 46(W1):W537–W544. https://doi.org/10.1093/nar/gky379

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Di Tommaso P (2015) The impact of Docker containers on the performance of genomic pipelines. PeerJ 3:e1273. https://doi.org/10.7717/peerj.1273

    Article  PubMed  PubMed Central  Google Scholar 

  15. Fassio G (2019) Venom diversity and evolution in the Most divergent cone snail genus Profundiconus. Toxins 11:623. https://doi.org/10.3390/toxins11110623

    Article  CAS  PubMed Central  Google Scholar 

  16. Haas BJ, Yassour M, Levin JZ et al (2011) Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nat Biotechnol 29(7):644–652. https://doi.org/10.1038/nbt.1883

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Lohse M, Usadel B, Bolger AM et al (2014) Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30(15):2114–2120. https://doi.org/10.1093/bioinformatics/btu170

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Liu ZH, Qian W, Li J et al (2009) Biochemical and pharmacological study of venom of the wolf spider Lycosa singoriensis. J Venom Anim Toxins Incl Trop Dis 15:79–92. https://doi.org/10.1590/S1678-91992009000100008

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by research grants from the Camille & Henry Dreyfus Foundation Teacher Scholar Award and the National Institutes of Health (NIH-NIMHD grant 8-G- 12-MD007599). Student support was provided by the Hunter College MARC program, Grant #GM007823, and NYU Tandon School of Engineering. Original test data and assistance was provided by Holford Lab member Juliette Gorson.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mande Holford .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Achrak, E., Ferd, J., Schulman, J., Dang, T., Krampis, K., Holford, M. (2022). VenomFlow: An Automated Bioinformatic Pipeline for Identification of Disulfide-Rich Peptides from Venom Arsenals. In: Verde, C., Giordano, D. (eds) Marine Genomics. Methods in Molecular Biology, vol 2498. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2313-8_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2313-8_6

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2312-1

  • Online ISBN: 978-1-0716-2313-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics