Skip to main content

Ultrafast Force-Clamp Spectroscopy of Microtubule-Binding Proteins

  • Protocol
  • First Online:
Optical Tweezers

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2478))

Abstract

Optical trapping has been instrumental for deciphering translocation mechanisms of the force-generating cytoskeletal proteins. However, studies of the dynamic interactions between microtubules (MTs) and MT-associated proteins (MAPs) with no motor activity are lagging. Investigating the motility of MAPs that can diffuse along MT walls is a particular challenge for optical-trapping assays because thermally driven motions rely on weak and highly transient interactions. Three-bead, ultrafast force-clamp (UFFC) spectroscopy has the potential to resolve static and diffusive translocations of different MAPs with sub-millisecond temporal resolution and sub-nanometer spatial precision. In this report, we present detailed procedures for implementing UFFC, including setup of the optical instrument and feedback control, immobilization and functionalization of pedestal beads, and preparation of MT dumbbells. Example results for strong static interactions were generated using the Kinesin-7 motor CENP-E in the presence of AMP-PNP. Time resolution for MAP–MT interactions in the UFFC assay is limited by the MT dumbbell relaxation time, which is significantly longer than reported for analogous experiments using actin filaments. UFFC, however, provides a unique opportunity for quantitative studies on MAPs that glide along MTs under a dragging force, as illustrated using the kinetochore-associated Ska complex.

Suvranta K. Tripathy and Vladimir M. Demidov have equal first-author contribution.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AOD:

Acousto-optic deflector

BG:

Biotinylated benzylguanine

b-PEG:

Biotin polyethylene glycol

BSA:

Bovine serum albumin

DTT:

Dithiothreitol

FPGA:

Field-programmable gate array

GBP:

GFP-binding protein

MAP:

Microtubule-associated protein

MT:

Microtubule

QPD:

Quadrant photo-detector

SD:

Standard deviation

UFFC:

Ultrafast force-clamp

References

  1. Peterman EJ, Scholey JM (2009) Mitotic microtubule crosslinkers: insights from mechanistic studies. Curr Biol 19(23):R1089–R1094. https://doi.org/10.1016/j.cub.2009.10.047

    Article  Google Scholar 

  2. Akhmanova A, Steinmetz MO (2015) Control of microtubule organization and dynamics: two ends in the limelight. Nat Rev Mol Cell Biol 16(12):711–726. https://doi.org/10.1038/nrm4084

    Article  Google Scholar 

  3. Bodakuntla S, Jijumon AS, Villablanca C, Gonzalez-Billault C, Janke C (2019) Microtubule-associated proteins: structuring the cytoskeleton. Trends Cell Biol 29(10):804–819. https://doi.org/10.1016/j.tcb.2019.07.004

    Article  Google Scholar 

  4. Tripathy SK, Weil SJ, Chen C, Anand P, Vallee RB, Gross SP (2014) Autoregulatory mechanism for dynactin control of processive and diffusive dynein transport. Nat Cell Biol 16(12):1192–U1147. https://doi.org/10.1038/ncb3063

    Article  Google Scholar 

  5. Barlan K, Gelfand VI (2017) Microtubule-based transport and the distribution, tethering, and organization of organelles. Cold Spring Harb Perspect Biol 9(5):a025817. https://doi.org/10.1101/cshperspect.a025817

    Article  Google Scholar 

  6. van de Willige D, Hoogenraad CC, Akhmanova A (2016) Microtubule plus-end tracking proteins in neuronal development. Cell Mol Life Sci 73(10):2053–2077. https://doi.org/10.1007/s00018-016-2168-3

    Article  Google Scholar 

  7. Ramkumar A, Jong BY, Ori-McKenney KM (2018) ReMAPping the microtubule landscape: how phosphorylation dictates the activities of microtubule-associated proteins. Dev Dyn 247(1):138–155. https://doi.org/10.1002/dvdy.24599

    Article  Google Scholar 

  8. Sferra A (2020) Microtubule dysfunction: a common feature of neurodegenerative diseases. Int J Mol Sci 21(19):7354. https://doi.org/10.3390/ijms21197354

    Article  Google Scholar 

  9. Cheeseman IM (2014) The kinetochore. Cold Spring Harb Perspect Biol 6(7):a015826. https://doi.org/10.1101/cshperspect.a015826

    Article  Google Scholar 

  10. Musacchio A, Desai A (2017) A molecular view of kinetochore assembly and function. Biology (Basel) 6(1):5. https://doi.org/10.3390/biology6010005

    Article  Google Scholar 

  11. Grishchuk EL (2017) Biophysics of microtubule end coupling at the kinetochore. Prog Mol Subcell Biol 56:397–428. https://doi.org/10.1007/978-3-319-58592-5_17

    Article  Google Scholar 

  12. Joglekar AP, Bloom KS, Salmon ED (2010) Mechanisms of force generation by end-on kinetochore-microtubule attachments. Curr Opin Cell Biol 22(1):57–67. https://doi.org/10.1016/j.ceb.2009.12.010

    Article  Google Scholar 

  13. Maddox P, Straight A, Coughlin P, Mitchison TJ, Salmon ED (2003) Direct observation of microtubule dynamics at kinetochores in Xenopus extract spindles: implications for spindle mechanics. J Cell Biol 162(3):377–382. https://doi.org/10.1083/jcb.200301088

    Article  Google Scholar 

  14. Dumont S, Salmon ED, Mitchison TJ (2012) Deformations within moving kinetochores reveal different sites of active and passive force generation. Science 337(6092):355–358. https://doi.org/10.1126/science.1221886

    Article  ADS  Google Scholar 

  15. Efremov A, Grishchuk EL, McIntosh JR, Ataullakhanov FI (2007) In search of an optimal ring to couple microtubule depolymerization to processive chromosome motions. Proc Natl Acad Sci U S A 104(48):19017–19022. https://doi.org/10.1073/pnas.0709524104

    Article  ADS  Google Scholar 

  16. Hill TL (1985) Theoretical problems related to the attachment of microtubules to kinetochores. Proc Natl Acad Sci 82(13):4404–4408. https://doi.org/10.1073/pnas.82.13.4404

    Article  ADS  Google Scholar 

  17. Bormuth V, Varga V, Howard J, Schaffer E (2009) Protein friction limits diffusive and directed movements of kinesin motors on microtubules. Science 325(5942):870–873. https://doi.org/10.1126/science.1174923

    Article  ADS  Google Scholar 

  18. Grishchuk EL, Spiridonov IS, Volkov VA, Efremov A, Westermann S, Drubin D, Barnes G, Ataullakhanov FI, McIntosh JR (2008) Different assemblies of the DAM1 complex follow shortening microtubules by distinct mechanisms. Proc Natl Acad Sci U S A 105(19):6918–6923. https://doi.org/10.1073/pnas.0801811105

    Article  ADS  Google Scholar 

  19. Forth S, Hsia KC, Shimamoto Y, Kapoor TM (2014) Asymmetric friction of nonmotor MAPs can lead to their directional motion in active microtubule networks. Cell 157(2):420–432. https://doi.org/10.1016/j.cell.2014.02.018

    Article  Google Scholar 

  20. Lansky Z, Braun M, Ludecke A, Schlierf M, ten Wolde PR, Janson ME, Diez S (2015) Diffusible crosslinkers generate directed forces in microtubule networks. Cell 160(6):1159–1168. https://doi.org/10.1016/j.cell.2015.01.051

    Article  Google Scholar 

  21. Chakraborty M, Tarasovetc EV, Zaytsev AV, Godzi M, Figueiredo AC, Ataullakhanov FI, Grishchuk EL (2019) Microtubule end conversion mediated by motors and diffusing proteins with no intrinsic microtubule end-binding activity. Nat Commun 10(1):1673. https://doi.org/10.1038/s41467-019-09411-7

    Article  ADS  Google Scholar 

  22. Gaska I, Armstrong ME, Alfieri A, Forth S (2020) The mitotic crosslinking protein PRC1 acts like a mechanical dashpot to resist microtubule sliding. Dev Cell 54(3):367. https://doi.org/10.1016/j.devcel.2020.06.017

    Article  Google Scholar 

  23. Okada Y, Hirokawa N (2000) Mechanism of the single-headed processivity: diffusional anchoring between the K-loop of kinesin and the C terminus of tubulin. Proc Natl Acad Sci U S A 97(2):640–645. https://doi.org/10.1073/pnas.97.2.640

    Article  ADS  Google Scholar 

  24. Cooper JR, Wordeman L (2009) The diffusive interaction of microtubule binding proteins. Curr Opin Cell Biol 21(1):68–73. https://doi.org/10.1016/j.ceb.2009.01.005

    Article  Google Scholar 

  25. Zaytsev AV, Mick JE, Maslennikov E, Nikashin B, DeLuca JG, Grishchuk EL (2015) Multisite phosphorylation of the NDC80 complex gradually tunes its microtubule-binding affinity. Mol Biol Cell 26(10):1829–1844. https://doi.org/10.1091/mbc.E14-11-1539

    Article  Google Scholar 

  26. Brouhard GJ, Stear JH, Noetzel TL, Al-Bassam J, Kinoshita K, Harrison SC, Howard J, Hyman AA (2008) XMAP215 is a processive microtubule polymerase. Cell 132(1):79–88. https://doi.org/10.1016/j.cell.2007.11.043

    Article  Google Scholar 

  27. Hinrichs MH, Jalal A, Brenner B, Mandelkow E, Kumar S, Scholz T (2012) Tau protein diffuses along the microtubule lattice. J Biol Chem 287(46):38559–38568. https://doi.org/10.1074/jbc.M112.369785

    Article  Google Scholar 

  28. Ashkin A, Dziedzic JM, Bjorkholm JE, Chu S (1986) Observation of a single-beam gradient force optical trap for dielectric particles. Opt Lett 11(5):288–290. https://doi.org/10.1364/ol.11.000288

    Article  ADS  Google Scholar 

  29. Finer JT, Simmons RM, Spudich JA (1994) Single myosin molecule mechanics: piconewton forces and nanometre steps. Nature 368(6467):113–119. https://doi.org/10.1038/368113a0

    Article  ADS  Google Scholar 

  30. Visscher K, Schnitzer MJ, Block SM (1999) Single kinesin molecules studied with a molecular force clamp. Nature 400(6740):184–189. https://doi.org/10.1038/22146

    Article  ADS  Google Scholar 

  31. Capitanio M, Pavone FS (2013) Interrogating biology with force: single molecule high-resolution measurements with optical tweezers. Biophys J 105(6):1293–1303. https://doi.org/10.1016/j.bpj.2013.08.007

    Article  Google Scholar 

  32. Pyrpassopoulos S, Shuman H, Ostap EM (2020) Modulation of Kinesin’s load-bearing capacity by force geometry and the microtubule track. Biophys J 118(1):243–253. https://doi.org/10.1016/j.bpj.2019.10.045

    Article  Google Scholar 

  33. Schnitzer MJ, Visscher K, Block SM (2000) Force production by single kinesin motors. Nat Cell Biol 2(10):718–723. https://doi.org/10.1038/35036345

    Article  Google Scholar 

  34. Gennerich A, Carter AP, Reck-Peterson SL, Vale RD (2007) Force-induced bidirectional stepping of cytoplasmic dynein. Cell 131(5):952–965. https://doi.org/10.1016/j.cell.2007.10.016

    Article  Google Scholar 

  35. Laakso JM, Lewis JH, Shuman H, Ostap EM (2008) Myosin I can act as a molecular force sensor. Science 321(5885):133–136. https://doi.org/10.1126/science.1159419

    Article  ADS  Google Scholar 

  36. Andreasson Johan OL, Shastry S, Hancock William O, Block Steven M (2015) The mechanochemical cycle of mammalian kinesin-2 KIF3A/B under load. Curr Biol 25(9):1166–1175. https://doi.org/10.1016/j.cub.2015.03.013

    Article  Google Scholar 

  37. Gudimchuk N, Tarasovetc EV, Mustyatsa V, Drobyshev AL, Vitre B, Cleveland DW, Ataullakhanov FI, Grishchuk EL (2018) Probing mitotic CENP-E kinesin with the tethered cargo motion assay and laser tweezers. Biophys J 114(11):2640–2652. https://doi.org/10.1016/j.bpj.2018.04.017

    Article  Google Scholar 

  38. Uemura S, Si I (2003) Loading direction regulates the affinity of ADP for kinesin. Nat Struct Mol Biol 10(4):308–311. https://doi.org/10.1038/nsb911

    Article  Google Scholar 

  39. Oguchi Y, Mikhailenko SV, Ohki T, Olivares AO, De La Cruz EM, Si I (2008) Load-dependent ADP binding to myosins V and VI: implications for subunit coordination and function. Proc Natl Acad Sci 105(22):7714–7719. https://doi.org/10.1073/pnas.0800564105

    Article  ADS  Google Scholar 

  40. Cleary FB, Dewitt MA, Bilyard T, Htet ZM, Belyy V, Chan DD, Chang AY, Yildiz A (2014) Tension on the linker gates the ATP-dependent release of dynein from microtubules. Nat Commun 5:4587. https://doi.org/10.1038/ncomms5587

    Article  ADS  Google Scholar 

  41. Dogan Merve Y, Can S, Cleary Frank B, Purde V, Yildiz A (2015) Kinesin’s front head is gated by the backward orientation of its neck linker. Cell Rep 10(12):1967–1973. https://doi.org/10.1016/j.celrep.2015.02.061

    Article  Google Scholar 

  42. Buckley CD, Tan J, Anderson KL, Hanein D, Volkmann N, Weis WI, Nelson WJ, Dunn AR (2014) Cell adhesion. The minimal cadherin-catenin complex binds to actin filaments under force. Science 346(6209):1254211. https://doi.org/10.1126/science.1254211

    Article  Google Scholar 

  43. Huang DL, Bax NA, Buckley CD, Weis WI, Dunn AR (2017) Vinculin forms a directionally asymmetric catch bond with F-actin. Science 357(6352):703–706. https://doi.org/10.1126/science.aan2556

    Article  ADS  Google Scholar 

  44. Capitanio M, Canepari M, Maffei M, Beneventi D, Monico C, Vanzi F, Bottinelli R, Pavone FS (2012) Ultrafast force-clamp spectroscopy of single molecules reveals load dependence of myosin working stroke. Nat Methods 9(10):1013–1019. https://doi.org/10.1038/nmeth.2152

    Article  Google Scholar 

  45. Svoboda K, Block SM (1994) Force and velocity measured for single kinesin molecules. Cell 77(5):773–784. pii:0092-8674(94)90060-4

    Article  Google Scholar 

  46. Grishchuk EL, Molodtsov MI, Ataullakhanov FI, McIntosh JR (2005) Force production by disassembling microtubules. Nature 438(7066):384–388. https://doi.org/10.1038/nature04132

    Article  ADS  Google Scholar 

  47. Grishchuk EL, Efremov AK, Volkov VA, Spiridonov IS, Gudimchuk N, Westermann S, Drubin D, Barnes G, McIntosh JR, Ataullakhanov FI (2008) The Dam1 ring binds microtubules strongly enough to be a processive as well as energy-efficient coupler for chromosome motion. Proc Natl Acad Sci U S A 105(40):15423–15428. https://doi.org/10.1073/pnas.0807859105

    Article  ADS  Google Scholar 

  48. Sung J, Nag S, Mortensen KI, Vestergaard CL, Sutton S, Ruppel K, Flyvbjerg H, Spudich JA (2015) Harmonic force spectroscopy measures load-dependent kinetics of individual human beta-cardiac myosin molecules. Nat Commun 6:7931. https://doi.org/10.1038/ncomms8931

    Article  ADS  Google Scholar 

  49. Howard J, Hancock WO (2020) Three beads are better than one. Biophys J 118(1):1–3. https://doi.org/10.1016/j.bpj.2019.12.001

    Article  Google Scholar 

  50. Gardini L, Woody MS, Kashchuk AV, Goldman YE, Ostap EM, Capitanio M (2022) High-speed optical traps address dynamics of processive and non-processive molecular motors. In: Gennerich A (ed) Optical tweezers: methods and protocols. Methods in molecular biology, vol 2478. Springer, New York

    Google Scholar 

  51. Dupuis DE, Guilford WH, Wu J, Warshaw DM (1997) Actin filament mechanics in the laser trap. J Muscle Res Cell Motil 18(1):17–30. https://doi.org/10.1023/a:1018672631256

    Article  Google Scholar 

  52. Arbore C, Sergides M, Gardini L, Pavone FS, Capitanio M (2020) α-Catenin switches between a slip and a cooperative catch bond with F-actin to regulate cell junction fluidity. bioRxiv:2020.2004.2015.035527. https://doi.org/10.1101/2020.04.15.035527

  53. Gardini L, Tempestini A, Pavone FS, Capitanio M (2018) High-speed optical tweezers for the study of single molecular motors. Methods Mol Biol 1805:151–184. https://doi.org/10.1007/978-1-4939-8556-2_9

    Article  Google Scholar 

  54. Woody MS, Capitanio M, Ostap EM, Goldman YE (2018) Electro-optic deflectors deliver advantages over acousto-optical deflectors in a high resolution, ultra-fast force-clamp optical trap. Opt Express 26(9):11181–11193. https://doi.org/10.1364/OE.26.011181

    Article  ADS  Google Scholar 

  55. Woody MS, Winkelmann DA, Capitanio M, Ostap EM, Goldman YE (2019) Single molecule mechanics resolves the earliest events in force generation by cardiac myosin. elife 8. https://doi.org/10.7554/eLife.49266

  56. Tempestini A, Monico C, Gardini L, Vanzi F, Pavone FS, Capitanio M (2018) Sliding of a single lac repressor protein along DNA is tuned by DNA sequence and molecular switching. Nucleic Acids Res 46(10):5001–5011. https://doi.org/10.1093/nar/gky208

    Article  Google Scholar 

  57. Howard J (2001) Mechanics of motor proteins and the cytoskeleton. Sinauer Associates, Sunderland

    Google Scholar 

  58. Brouhard GJ, Schek HT 3rd, Hunt AJ (2003) Advanced optical tweezers for the study of cellular and molecular biomechanics. IEEE Trans Biomed Eng 50(1):121–125. https://doi.org/10.1109/TBME.2002.805463

    Article  Google Scholar 

  59. Barisic M, Silva e Sousa R, Tripathy SK, Magiera MM, Zaytsev AV, Pereira AL, Janke C, Grishchuk EL, Maiato H (2015) Mitosis. Microtubule detyrosination guides chromosomes during mitosis. Science 348(6236):799–803. https://doi.org/10.1126/science.aaa5175

    Article  ADS  Google Scholar 

  60. Sung JM, Sivaramakrishnan S, Dunn AR, Spudich JA (2010) Single-molecule dual-beam optical trap analysis of protein structure and function. Method Enzymol 475:321–375. https://doi.org/10.1016/S0076-6879(10)75014-X

    Article  Google Scholar 

  61. Visscher K, Block SM (1998) Versatile optical traps with feedback control. Methods Enzymol 298:460–489. https://doi.org/10.1016/s0076-6879(98)98040-5

    Article  Google Scholar 

  62. Greenberg MJ, Shuman H, Ostap EM (2017) Measuring the kinetic and mechanical properties of non-processive Myosins using optical tweezers. In: Gennerich A (ed) Optical tweezers: methods and protocols. Springer, New York, pp 483–509. https://doi.org/10.1007/978-1-4939-6421-5_19

    Chapter  Google Scholar 

  63. Cheeseman IM, Desai A (2008) Molecular architecture of the kinetochore-microtubule interface. Nat Rev Mol Cell Biol 9(1):33–46. https://doi.org/10.1038/nrm2310

    Article  Google Scholar 

  64. Pristoupil TI, Kramlova M, Sterbikova J (1969) On the mechanism of adsorption of proteins to nitrocellulose in membrane chromatography. J Chromatogr 42(3):367–375. https://doi.org/10.1016/s0021-9673(01)80636-1

    Article  Google Scholar 

  65. Ciferri C, Pasqualato S, Screpanti E, Varetti G, Santaguida S, Dos Reis G, Maiolica A, Polka J, De Luca JG, De Wulf P, Salek M, Rappsilber J, Moores CA, Salmon ED, Musacchio A (2008) Implications for kinetochore-microtubule attachment from the structure of an engineered Ndc80 complex. Cell 133(3):427–439. https://doi.org/10.1016/j.cell.2008.03.020

    Article  Google Scholar 

  66. Waner MJ, Navrotskaya I, Bain A, Oldham ED, Mascotti DP (2004) Thermal and sodium dodecylsulfate induced transitions of streptavidin. Biophys J 87(4):2701–2713. https://doi.org/10.1529/biophysj.104.047266

    Article  Google Scholar 

  67. Li Q, King Stephen J, Gopinathan A, Xu J (2016) Quantitative determination of the probability of multiple-motor transport in bead-based assays. Biophys J 110(12):2720–2728. https://doi.org/10.1016/j.bpj.2016.05.015

    Article  Google Scholar 

  68. Chakraborty M, Tarasovetc EV, Grishchuk EL (2018) In vitro reconstitution of lateral to end-on conversion of kinetochore-microtubule attachments. Methods Cell Biol 144:307–327. https://doi.org/10.1016/bs.mcb.2018.03.018

    Article  Google Scholar 

  69. Miller HP, Wilson L (2010) Preparation of microtubule protein and purified tubulin from bovine brain by cycles of assembly and disassembly and phosphocellulose chromatography. Methods Cell Biol 95:3–15. https://doi.org/10.1016/S0091-679X(10)95001-2

    Article  Google Scholar 

  70. Hyman A, Drechsel D, Kellogg D, Salser S, Sawin K, Steffen P, Wordeman L, Mitchison T (1991) Preparation of modified tubulins. Methods Enzymol 196:478–485. https://doi.org/10.1016/0076-6879(91)96041-o

    Article  Google Scholar 

  71. Schmidt JC, Arthanari H, Boeszoermenyi A, Dashkevich NM, Wilson-Kubalek EM, Monnier N, Markus M, Oberer M, Milligan RA, Bathe M, Wagner G, Grishchuk EL, Cheeseman IM (2012) The kinetochore-bound Ska1 complex tracks depolymerizing microtubules and binds to curved protofilaments. Dev Cell 23(5):968–980. https://doi.org/10.1016/j.devcel.2012.09.012

    Article  Google Scholar 

  72. Monda JK, Whitney IP, Tarasovetc EV, Wilson-Kubalek E, Milligan RA, Grishchuk EL, Cheeseman IM (2017) Microtubule tip tracking by the spindle and kinetochore protein Ska1 requires diverse tubulin-interacting surfaces. Curr Biol 27(23):3666–3675.e3666. https://doi.org/10.1016/j.cub.2017.10.018

    Article  Google Scholar 

  73. Volkov VA, Zaytsev AV, Grishchuk EL (2014) Preparation of segmented microtubules to study motions driven by the disassembling microtubule ends. J Vis Exp (85):51150. https://doi.org/10.3791/51150

Download references

Acknowledgments

We gratefully thank Drs. Yale E. Goldman and Michael Ostap, and their lab members, for their continuous support and excellent suggestions over the years as we developed the protocols and methods detailed herein. We also thank members of our lab for stimulating discussions and technical assistance. This work is supported by the National Institute of General Medical Sciences of the National Institutes of Health under award numbers R35-GM141747 to E.L.G, and the National Science Foundation (grant #2029868). Development of protocols to functionalize pedestals and microscopy chambers was supported in part by a grant from the Russian Science Foundation (project No. 21-45-00012).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ekaterina L. Grishchuk .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Tripathy, S.K., Demidov, V.M., Gonchar, I.V., Wu, S., Ataullakhanov, F.I., Grishchuk, E.L. (2022). Ultrafast Force-Clamp Spectroscopy of Microtubule-Binding Proteins. In: Gennerich, A. (eds) Optical Tweezers. Methods in Molecular Biology, vol 2478. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2229-2_22

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2229-2_22

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2228-5

  • Online ISBN: 978-1-0716-2229-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics