Skip to main content

Studying the Dynamics of Chromatin-Binding Proteins in Mammalian Cells Using Single-Molecule Localization Microscopy

  • Protocol
  • First Online:
Book cover Chromosome Architecture

Abstract

Single-molecule localization microscopy (SMLM) allows the super-resolved imaging of proteins within mammalian nuclei at spatial resolutions comparable to that of a nucleosome itself (~20 nm). The technique is therefore well suited to the study of chromatin structure. Fixed-cell SMLM has already allowed temporal “snapshots” of how proteins are arranged on chromatin within mammalian nuclei. In this chapter, we focus on how recent developments, for example in selective plane illumination, 3D SMLM, and protein labeling, have led to a range of live-cell SMLM studies. We describe how to carry out single-particle tracking (SPT) of single proteins and, by analyzing their diffusion parameters, how to determine whether proteins interact with chromatin, diffuse freely, or do both. We can study the numbers of proteins that interact with chromatin and also determine their residence time on chromatin. We can determine whether these proteins form functional clusters within the nucleus as well as whether they form specific nuclear structures.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Cremer T, Kurz A, Zirbel R, Dietzel S, Rinke B et al (1993) Role of chromosome territories in the functional compartmentalization of the cell nucleus. Cold Spring Harb Symp Quant Biol 58:777–792

    Article  CAS  PubMed  Google Scholar 

  2. Branco MR, Pombo A (2006) Intermingling of chromosome territories in interphase suggests role in translocations and transcription-dependent associations. PLoS Biol 4:e138

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  3. Stevens TJ, Lando D, Basu S, Atkinson LP, Cao Y et al (2017) 3D structures of individual mammalian genomes studied by single-cell Hi-C. Nature 544:59–64

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Lando D, Basu S, Stevens TJ, Riddell A, Wohlfahrt KJ et al (2018) Combining fluorescence imaging with Hi-C to study 3D genome architecture of the same single cell. Nat Protoc 13:1034–1061

    Article  CAS  PubMed  Google Scholar 

  5. Ma X, Ezer D, Adryan B, Stevens TJ (2018) Canonical and single-cell Hi-C reveal distinct chromatin interaction sub-networks of mammalian transcription factors. Genome Biol 19:174

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Lakadamyali M, Cosma MP (2020) Visualizing the genome in high resolution challenges our textbook understanding. Nat Methods 17:371–379

    Article  CAS  PubMed  Google Scholar 

  7. Bintu B, Mateo LJ, Su JH, Sinnott-Armstrong NA, Parker M et al (2018) Super-resolution chromatin tracing reveals domains and cooperative interactions in single cells. Science 362

    Google Scholar 

  8. Trzaskoma P, Ruszczycki B, Lee B, Pels KK, Krawczyk K et al (2020) Ultrastructural visualization of 3D chromatin folding using volume electron microscopy and DNA in situ hybridization. Nat Commun 11:2120

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Dekker J, Rippe K, Dekker M, Kleckner N (2002) Capturing chromosome conformation. Science 295:1306–1311

    Article  CAS  PubMed  Google Scholar 

  10. Lieberman-Aiden E, van Berkum NL, Williams L, Imakaev M, Ragoczy T et al (2009) Comprehensive mapping of long-range interactions reveals folding principles of the human genome. Science 326:289–293

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Rao SS, Huntley MH, Durand NC, Stamenova EK, Bochkov ID et al (2014) A 3D map of the human genome at kilobase resolution reveals principles of chromatin looping. Cell 159:1665–1680

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Chang LH, Noordermeer D (2020) Of dots and stripes: the morse code of micro-C reveals the ultrastructure of transcriptional and architectural mammalian 3D genome organization. Mol Cell 78:376–378

    Article  CAS  PubMed  Google Scholar 

  13. Hsieh TH, Weiner A, Lajoie B, Dekker J, Friedman N, Rando OJ (2015) Mapping nucleosome resolution chromosome folding in yeast by micro-C. Cell 162:108–119

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Boettiger A, Murphy S (2020) Advances in chromatin imaging at Kilobase-scale resolution. Trends Genet 36:273–287

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Mir M, Bickmore W, Furlong EEM, Narlikar G (2019) Chromatin topology, condensates and gene regulation: shifting paradigms or just a phase? Development 146

    Google Scholar 

  16. Strom AR, Emelyanov AV, Mir M, Fyodorov DV, Darzacq X, Karpen GH (2017) Phase separation drives heterochromatin domain formation. Nature 547:241–245

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Larson AG, Elnatan D, Keenen MM, Trnka MJ, Johnston JB et al (2017) Liquid droplet formation by HP1alpha suggests a role for phase separation in heterochromatin. Nature 547:236–240

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Sanulli S, Trnka MJ, Dharmarajan V, Tibble RW, Pascal BD et al (2019) HP1 reshapes nucleosome core to promote phase separation of heterochromatin. Nature 575:390–394

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Han X, Yu D, Gu R, Jia Y, Wang Q et al (2020) Roles of the BRD4 short isoform in phase separation and active gene transcription. Nat Struct Mol Biol 27:333–341

    Article  CAS  PubMed  Google Scholar 

  20. Liu Z, Legant WR, Chen BC, Li L, Grimm JB et al (2014) 3D imaging of Sox2 enhancer clusters in embryonic stem cells. elife 3:e04236

    Article  PubMed  PubMed Central  Google Scholar 

  21. Klar TA, Jakobs S, Dyba M, Egner A, Hell SW (2000) Fluorescence microscopy with diffraction resolution barrier broken by stimulated emission. Proc Natl Acad Sci U S A 97:8206–8210

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Dreier J, Castello M, Coceano G, Caceres R, Plastino J et al (2019) Smart scanning for low-illumination and fast RESOLFT nanoscopy in vivo. Nat Commun 10:556

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Hofmann M, Eggeling C, Jakobs S, Hell SW (2005) Breaking the diffraction barrier in fluorescence microscopy at low light intensities by using reversibly photoswitchable proteins. Proc Natl Acad Sci U S A 102:17565–17569

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Gustafsson MG (2000) Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy. J Microsc 198:82–87

    Article  CAS  PubMed  Google Scholar 

  25. Balzarotti F, Eilers Y, Gwosch KC, Gynna AH, Westphal V et al (2017) Nanometer resolution imaging and tracking of fluorescent molecules with minimal photon fluxes. Science 355:606–612

    Article  CAS  PubMed  Google Scholar 

  26. Gwosch KC, Pape JK, Balzarotti F, Hoess P, Ellenberg J et al (2020) MINFLUX nanoscopy delivers 3D multicolor nanometer resolution in cells. Nat Methods 17:217–224

    Article  CAS  PubMed  Google Scholar 

  27. Rust MJ, Bates M, Zhuang X (2006) Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM). Nat Methods 3:793–795

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Betzig E, Patterson GH, Sougrat R, Lindwasser OW, Olenych S et al (2006) Imaging intracellular fluorescent proteins at nanometer resolution. Science 313:1642–1645

    Article  CAS  PubMed  Google Scholar 

  29. Hess ST, Girirajan TP, Mason MD (2006) Ultra-high resolution imaging by fluorescence photoactivation localization microscopy. Biophys J 91:4258–4272

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Abbe E (1873) Beiträge zur Theorie des Mikroskops und der mikroskopischen Wahrnehmung. Arch Mikrosk Anat 9:413–468

    Article  Google Scholar 

  31. Gebhardt JC, Suter DM, Roy R, Zhao ZW, Chapman AR et al (2013) Single-molecule imaging of transcription factor binding to DNA in live mammalian cells. Nat Methods 10:421–426

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Basu S, Shukron O, Ponjavic A, Parruto P, Boucher W et al (2020) Live-cell 3D single-molecule tracking reveals how NuRD modulates enhancer dynamics. bioRxiv. https://doi.org/10.1101/2020.04.03.003178

  33. Carr AR, Ponjavic A, Basu S, McColl J, Santos AM et al (2017) Three-dimensional super-resolution in eukaryotic cells using the double-helix point spread function. Biophys J 112:1444–1454

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Wiese M, Bannister AJ, Basu S, Boucher W, Wohlfahrt K et al (2019) Citrullination of HP1gamma chromodomain affects association with chromatin. Epigenetics Chromatin 12:21

    Article  PubMed  PubMed Central  Google Scholar 

  35. Zhang W, Aubert A, Gomez de Segura JM, Karuppasamy M, Basu S et al (2016) The nucleosome remodeling and deacetylase complex NuRD is built from preformed catalytically active sub-modules. J Mol Biol 428:2931–2942

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Izeddin I, Recamier V, Bosanac L, Cisse II, Boudarene L et al (2014) Single-molecule tracking in live cells reveals distinct target-search strategies of transcription factors in the nucleus. elife 3

    Google Scholar 

  37. Chen J, Zhang Z, Li L, Chen BC, Revyakin A et al (2014) Single-molecule dynamics of enhanceosome assembly in embryonic stem cells. Cell 156:1274–1285

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Zhao ZW, Roy R, Gebhardt JC, Suter DM, Chapman AR, Xie XS (2014) Spatial organization of RNA polymerase II inside a mammalian cell nucleus revealed by reflected light-sheet superresolution microscopy. Proc Natl Acad Sci U S A 111:681–686

    Article  CAS  PubMed  Google Scholar 

  39. Cisse II, Izeddin I, Causse SZ, Boudarene L, Senecal A et al (2013) Real-time dynamics of RNA polymerase II clustering in live human cells. Science 341:664–667

    Article  CAS  PubMed  Google Scholar 

  40. Germier T, Audibert S, Kocanova S, Lane D, Bystricky K (2018) Real-time imaging of specific genomic loci in eukaryotic cells using the ANCHOR DNA labelling system. Methods 142:16–23

    Article  PubMed  CAS  Google Scholar 

  41. Germier T, Kocanova S, Walther N, Bancaud A, Shaban HA et al (2017) Real-time imaging of a single gene reveals transcription-initiated local confinement. Biophys J 113:1383–1394

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Alexander JM, Guan J, Li B, Maliskova L, Song M et al (2019) Live-cell imaging reveals enhancer-dependent Sox2 transcription in the absence of enhancer proximity. elife 8

    Google Scholar 

  43. Gu B, Swigut T, Spencley A, Bauer MR, Chung M et al (2018) Transcription-coupled changes in nuclear mobility of mammalian cis-regulatory elements. Science 359:1050–1055

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Eykelenboom JK, Tanaka TU (2020) Zooming in on chromosome dynamics. Cell Cycle 19:1422–1432

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Dickerson D, Gierliński M, Singh V, Kitamura E, Ball G et al (2016) High resolution imaging reveals heterogeneity in chromatin states between cells that is not inherited through cell division. BMC Cell Biol 17:33

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  46. Basu S, Needham LM, Lando D, Taylor EJR, Wohlfahrt KJ et al (2018) FRET-enhanced photostability allows improved single-molecule tracking of proteins and protein complexes in live mammalian cells. Nat Commun 9:2520

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  47. Hu YS, Zhu Q, Elkins K, Tse K, Li Y et al (2013) Light-sheet Bayesian microscopy enables deep-cell super-resolution imaging of heterochromatin in live human embryonic stem cells. Opt Nanoscopy 2

    Google Scholar 

  48. Edelstein A, Amodaj N, Hoover K, Vale R, Stuurman N (2010) Computer control of microscopes using micromanager. Curr Protoc Mol Biol Chapter 14(Unit14):20

    Google Scholar 

  49. Schneider CA, Rasband WS, Eliceiri KW (2012) NIH Image to ImageJ: 25 years of image analysis. Nat Methods 9:671–675

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Lee SA, Ponjavic A, Siv C, Lee SF, Biteen JS (2016) Nanoscopic cellular imaging: confinement broadens understanding. ACS Nano 10:8143–8153

    Article  CAS  PubMed  Google Scholar 

  51. Palayret M, Armes H, Basu S, Watson AT, Herbert A et al (2015) Virtual-‘light-sheet’ single-molecule localisation microscopy enables quantitative optical sectioning for super-resolution imaging. PLoS One 10:e0125438

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  52. Yang B, Chen X, Wang Y, Feng S, Pessino V et al (2019) Epi-illumination SPIM for volumetric imaging with high spatial-temporal resolution. Nat Methods 16:501–504

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Kim J, Wojcik M, Wang Y, Moon S, Zin EA et al (2019) Oblique-plane single-molecule localization microscopy for tissues and small intact animals. Nat Methods 16:853–857

    Article  CAS  PubMed  Google Scholar 

  54. Sapoznik E, Chang BJ, Huh J, Ju RJ, Azarova EV et al (2020) A versatile oblique plane microscope for large-scale and high-resolution imaging of subcellular dynamics. elife 9

    Google Scholar 

  55. Tokunaga M, Imamoto N, Sakata-Sogawa K (2008) Highly inclined thin illumination enables clear single-molecule imaging in cells. Nat Methods 5:159–161

    Article  CAS  PubMed  Google Scholar 

  56. Galland R, Grenci G, Aravind A, Viasnoff V, Studer V, Sibarita JB (2015) 3D high- and super-resolution imaging using single-objective SPIM. Nat Methods 12:641–644

    Article  CAS  PubMed  Google Scholar 

  57. Ponjavic A, Ye Y, Laue E, Lee SF, Klenerman D (2018) Sensitive light-sheet microscopy in multiwell plates using an AFM cantilever. Biomed Opt Express 9:5863–5880

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Chen BC, Legant WR, Wang K, Shao L, Milkie DE et al (2014) Lattice light-sheet microscopy: imaging molecules to embryos at high spatiotemporal resolution. Science 346:1257998

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  59. Chang BJ, Kittisopikul M, Dean KM, Roudot P, Welf ES, Fiolka R (2019) Universal light-sheet generation with field synthesis. Nat Methods 16:235–238

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Kwakwa K, Savell A, Davies T, Munro I, Parrinello S et al (2016) easySTORM: a robust, lower-cost approach to localisation and TIRF microscopy. J Biophotonics 9:948–957

    Article  PubMed  Google Scholar 

  61. Deschamps J, Rowald A, Ries J (2016) Efficient homogeneous illumination and optical sectioning for quantitative single-molecule localization microscopy. Opt Express 24:28080–28090

    Article  CAS  PubMed  Google Scholar 

  62. Michalet X, Colyer RA, Scalia G, Ingargiola A, Lin R et al (2013) Development of new photon-counting detectors for single-molecule fluorescence microscopy. Philos Trans R Soc Lond Ser B Biol Sci 368:20120035

    Article  CAS  Google Scholar 

  63. Huang B, Wang W, Bates M, Zhuang X (2008) Three-dimensional super-resolution imaging by stochastic optical reconstruction microscopy. Science 319:810–813

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Pavani SR, Thompson MA, Biteen JS, Lord SJ, Liu N et al (2009) Three-dimensional, single-molecule fluorescence imaging beyond the diffraction limit by using a double-helix point spread function. Proc Natl Acad Sci U S A 106:2995–2999

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Shechtman Y, Weiss LE, Backer AS, Lee MY, Moerner WE (2016) Multicolour localization microscopy by point-spread-function engineering. Nat Photonics 10:590–594

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Juette MF, Gould TJ, Lessard MD, Mlodzianoski MJ, Nagpure BS et al (2008) Three-dimensional sub-100 nm resolution fluorescence microscopy of thick samples. Nat Methods 5:527–529

    Article  CAS  PubMed  Google Scholar 

  67. Abrahamsson S, Chen J, Hajj B, Stallinga S, Katsov AY et al (2013) Fast multicolor 3D imaging using aberration-corrected multifocus microscopy. Nat Methods 10:60–63

    Article  CAS  PubMed  Google Scholar 

  68. Sims RR, Abdul Rehman S, Lenz MO, Benaissa SI, Bruggeman E et al (2020) Single molecule light field microscopy. Optica 7:1065–1072

    Article  Google Scholar 

  69. Shtengel G, Galbraith JA, Galbraith CG, Lippincott-Schwartz J, Gillette JM et al (2009) Interferometric fluorescent super-resolution microscopy resolves 3D cellular ultrastructure. Proc Natl Acad Sci U S A 106:3125–3130

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Shtengel G, Wang Y, Zhang Z, Goh WI, Hess HF, Kanchanawong P (2014) Imaging cellular ultrastructure by PALM, iPALM, and correlative iPALM-EM. Methods Cell Biol 123:273–294

    Article  PubMed  Google Scholar 

  71. Deschamps J, Mund M, Ries J (2014) 3D superresolution microscopy by supercritical angle detection. Opt Express 22:29081–29091

    Article  PubMed  CAS  Google Scholar 

  72. Jouchet P, Cabriel C, Bourg N, Bardou M, Poüs C et al (2021) Nanometric axial localization of single fluorescent molecules with modulated excitation. Nat Photonics 15:297–304

    Article  CAS  Google Scholar 

  73. Cabriel C, Bourg N, Jouchet P, Dupuis G, Leterrier C et al (2019) Combining 3D single molecule localization strategies for reproducible bioimaging. Nat Commun 10:1980

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  74. Wu B, Piatkevich KD, Lionnet T, Singer RH, Verkhusha VV (2011) Modern fluorescent proteins and imaging technologies to study gene expression, nuclear localization, and dynamics. Curr Opin Cell Biol 23:310–317

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Shaner NC, Lin MZ, McKeown MR, Steinbach PA, Hazelwood KL et al (2008) Improving the photostability of bright monomeric orange and red fluorescent proteins. Nat Methods 5:545–551

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Nguyen AW, Daugherty PS (2005) Evolutionary optimization of fluorescent proteins for intracellular FRET. Nat Biotechnol 23:355–360

    Article  CAS  PubMed  Google Scholar 

  77. Lippincott-Schwartz J, Altan-Bonnet N, Patterson GH (2003) Photobleaching and photoactivation: following protein dynamics in living cells. Nat Cell Biol:S7–S14

    Google Scholar 

  78. Lippincott-Schwartz J, Patterson GH (2009) Photoactivatable fluorescent proteins for diffraction-limited and super-resolution imaging. Trends Cell Biol 19:555–565

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Patterson GH, Lippincott-Schwartz J (2002) A photoactivatable GFP for selective photolabeling of proteins and cells. Science 297:1873–1877

    Article  CAS  PubMed  Google Scholar 

  80. Subach FV, Patterson GH, Manley S, Gillette JM, Lippincott-Schwartz J, Verkhusha VV (2009) Photoactivatable mCherry for high-resolution two-color fluorescence microscopy. Nat Methods 6:153–159

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. McKinney SA, Murphy CS, Hazelwood KL, Davidson MW, Looger LL (2009) A bright and photostable photoconvertible fluorescent protein. Nat Methods 6:131–133

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Marathe P, Mahadeva Swamy HS, Nair D, Bhattacharyya D (2020) mEosBrite are bright variants of mEos3.2 developed by semirational protein engineering. J Fluoresc 30:703–715

    Article  CAS  PubMed  Google Scholar 

  83. Zhang MS, Chang H, Zhang YD, Yu JW, Wu LJ et al (2012) Rational design of true monomeric and bright photoactivatable fluorescent proteins. Nat Methods 9:727–U297

    Article  CAS  PubMed  Google Scholar 

  84. Verkhusha VV, Chudakov DM, Gurskaya NG, Lukyanov S, Lukyanov KA (2004) Common pathway for the red chromophore formation in fluorescent proteins and chromoproteins. Chem Biol 11:845–854

    Article  CAS  PubMed  Google Scholar 

  85. Habuchi S, Ando R, Dedecker P, Verheijen W, Mizuno H et al (2005) Reversible single-molecule photoswitching in the GFP-like fluorescent protein Dronpa. Proc Natl Acad Sci U S A 102:9511–9516

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Grimm JB, English BP, Chen J, Slaughter JP, Zhang Z et al (2015) A general method to improve fluorophores for live-cell and single-molecule microscopy. Nat Methods 12:244–250. 3 p following 50

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Wombacher R, Heidbreder M, van de Linde S, Sheetz MP, Heilemann M et al (2010) Live-cell super-resolution imaging with trimethoprim conjugates. Nat Methods 7:717–719

    Article  CAS  PubMed  Google Scholar 

  88. Wang L, Tran M, D’Este E, Roberti J, Koch B et al (2020) A general strategy to develop cell permeable and fluorogenic probes for multicolour nanoscopy. Nat Chem 12:165–172

    Article  CAS  PubMed  Google Scholar 

  89. Niekamp S, Stuurman N, Vale RD (2020) A 6-nm ultra-photostable DNA FluoroCube for fluorescence imaging. Nat Methods 17:437–441

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Grimm JB, Brown TA, English BP, Lionnet T, Lavis LD (2017) Synthesis of Janelia Fluor HaloTag and SNAP-Tag ligands and their use in cellular imaging experiments. Methods Mol Biol 1663:179–188

    Article  CAS  PubMed  Google Scholar 

  91. Grimm JB, English BP, Choi H, Muthusamy AK, Mehl BP et al (2016) Bright photoactivatable fluorophores for single-molecule imaging. Nat Methods 13:985–988

    Article  CAS  PubMed  Google Scholar 

  92. Zheng Q, Ayala AX, Chung I, Weigel AV, Ranjan A et al (2019) Rational design of fluorogenic and spontaneously blinking labels for super-resolution imaging. ACS Cent Sci 5:1602–1613

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Speil J, Baumgart E, Siebrasse JP, Veith R, Vinkemeier U, Kubitscheck U (2011) Activated STAT1 transcription factors conduct distinct saltatory movements in the cell nucleus. Biophys J 101:2592–2600

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Traenkle B, Rothbauer U (2017) Under the microscope: single-domain antibodies for live-cell imaging and super-resolution microscopy. Front Immunol 8:1030

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  95. Nikic I, Plass T, Schraidt O, Szymanski J, Briggs JA et al (2014) Minimal tags for rapid dual-color live-cell labeling and super-resolution microscopy. Angew Chem Int Ed Engl 53:2245–2249

    Article  CAS  PubMed  Google Scholar 

  96. Dempsey GT, Vaughan JC, Chen KH, Bates M, Zhuang X (2011) Evaluation of fluorophores for optimal performance in localization-based super-resolution imaging. Nat Methods 8:1027–1036

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Wang S, Moffitt JR, Dempsey GT, Xie XS, Zhuang X (2014) Characterization and development of photoactivatable fluorescent proteins for single-molecule-based superresolution imaging. Proc Natl Acad Sci U S A 111:8452–8457

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Di Matteo M, Matrai J, Belay E, Firdissa T, Vandendriessche T, Chuah MK (2012) PiggyBac toolbox. Methods Mol Biol 859:241–254

    Article  PubMed  CAS  Google Scholar 

  99. Sander JD, Joung JK (2014) CRISPR-Cas systems for editing, regulating and targeting genomes. Nat Biotechnol 32:347–355

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Mao G, Marotta F, Yu J, Zhou L, Yu Y et al (2008) DNA context and promoter activity affect gene expression in lentiviral vectors. Acta Biomed 79:192–196

    CAS  PubMed  Google Scholar 

  101. Balinovic A, Albrecht D, Endesfelder U (2019) Spectrally red-shifted fluorescent fiducial markers for optimal drift correction in localization microscopy. J Phys D Appl Phys 52:204002

    Article  CAS  Google Scholar 

  102. Cordes T, Vogelsang J, Tinnefeld P (2009) On the mechanism of Trolox as antiblinking and antibleaching reagent. J Am Chem Soc 131:5018–5019

    Article  CAS  PubMed  Google Scholar 

  103. Rasnik I, McKinney SA, Ha T (2006) Nonblinking and long-lasting single-molecule fluorescence imaging. Nat Methods 3:891–893

    Article  CAS  PubMed  Google Scholar 

  104. Mazza D, Abernathy A, Golob N, Morisaki T, McNally JG (2012) A benchmark for chromatin binding measurements in live cells. Nucleic Acids Res 40:e119

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Elf J, Li GW, Xie XS (2007) Probing transcription factor dynamics at the single-molecule level in a living cell. Science 316:1191–1194

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Etheridge TJ, Boulineau RL, Herbert A, Watson AT, Daigaku Y et al (2014) Quantification of DNA-associated proteins inside eukaryotic cells using single-molecule localization microscopy. Nucleic Acids Res 42:e146

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  107. Gomez-Garcia PA, Portillo-Ledesma S, Neguembor MV, Pesaresi M, Oweis W et al (2021) Mesoscale modeling and single-nucleosome tracking reveal remodeling of clutch folding and dynamics in stem cell differentiation. Cell Rep 34:108614

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Endesfelder U, van de Linde S, Wolter S, Sauer M, Heilemann M (2010) Subdiffraction-resolution fluorescence microscopy of myosin-actin motility. ChemPhysChem 11:836–840

    Article  CAS  PubMed  Google Scholar 

  109. Sage D, Pham TA, Babcock H, Lukes T, Pengo T et al (2019) Super-resolution fight club: assessment of 2D and 3D single-molecule localization microscopy software. Nat Methods 16:387–395

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Durisic N, Laparra-Cuervo L, Sandoval-Alvarez A, Borbely JS, Lakadamyali M (2014) Single-molecule evaluation of fluorescent protein photoactivation efficiency using an in vivo nanotemplate. Nat Methods 11:156–162

    Article  CAS  PubMed  Google Scholar 

  111. Ulbrich MH, Isacoff EY (2007) Subunit counting in membrane-bound proteins. Nat Methods 4:319–321

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Annibale P, Scarselli M, Kodiyan A, Radenovic A (2010) Photoactivatable fluorescent protein mEos2 displays repeated photoactivation after a long-lived dark state in the red photoconverted form. J Phys Chem Lett 1:1506–1510

    Article  CAS  Google Scholar 

  113. Lando D, Endesfelder U, Berger H, Subramanian L, Dunne PD et al (2012) Quantitative single-molecule microscopy reveals that CENP-A(Cnp1) deposition occurs during G2 in fission yeast. Open Biol 2:120078

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  114. Annibale P, Vanni S, Scarselli M, Rothlisberger U, Radenovic A (2011) Identification of clustering artifacts in photoactivated localization microscopy. Nat Methods 8:527–528

    Article  CAS  PubMed  Google Scholar 

  115. Ricci MA, Manzo C, Garcia-Parajo MF, Lakadamyali M, Cosma MP (2015) Chromatin fibers are formed by heterogeneous groups of nucleosomes in vivo. Cell 160:1145–1158

    Article  CAS  PubMed  Google Scholar 

  116. Strom AR, Brangwynne CP (2019) The liquid nucleome—phase transitions in the nucleus at a glance. J Cell Sci 132

    Google Scholar 

  117. Khater IM, Nabi IR, Hamarneh G (2020) A review of super-resolution single-molecule localization microscopy cluster analysis and quantification methods. Patterns (N Y) 1:100038

    Article  Google Scholar 

  118. Nieves DJ, Owen DM (2020) Analysis methods for interrogating spatial organisation of single molecule localisation microscopy data. Int J Biochem Cell Biol 123:105749

    Article  CAS  PubMed  Google Scholar 

  119. Vanleeuwen JMJ, Groeneveld J, Deboer J (1959) New method for the calculation of the pair correlation function. 1. Physica 25:792–808

    Article  Google Scholar 

  120. Sengupta P, Jovanovic-Talisman T, Lippincott-Schwartz J (2013) Quantifying spatial organization in point-localization superresolution images using pair correlation analysis. Nat Protoc 8:345–354

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Ripley BD (1977) Modeling spatial patterns. J Roy Stat Soc B Met 39:172–212

    Google Scholar 

  122. Cover TM, Hart PE (1967) Nearest neighbor pattern classification. IEEE T Inform Theory 13:21

    Article  Google Scholar 

  123. Malkusch S, Muranyi W, Muller B, Krausslich HG, Heilemann M (2013) Single-molecule coordinate-based analysis of the morphology of HIV-1 assembly sites with near-molecular spatial resolution. Histochem Cell Biol 139:173–179

    Article  CAS  PubMed  Google Scholar 

  124. Gan JH, Tao YF (2015) DBSCAN revisited: mis-claim, un-fixability, and approximation. In: Sigmod’15: Proceedings of the 2015 ACM Sigmod International Conference on Management of Data, pp 519–530

    Chapter  Google Scholar 

  125. Ester M, Kriegel H-P, Sander J, Xu X (1996) A density-based algorithm for discovering clusters in large spatial databases with noise. In: Proceedings of the second international conference on knowledge discovery and data mining. AAAI Press, Portland, Oregon, pp 226–231

    Google Scholar 

  126. Mazouchi A, Milstein JN (2016) Fast Optimized Cluster Algorithm for Localizations (FOCAL): a spatial cluster analysis for super-resolved microscopy. Bioinformatics 32:747–754

    Article  CAS  PubMed  Google Scholar 

  127. Nino DF, Djayakarsana D, Milstein JN (2020) FOCAL3D: A 3-dimensional clustering package for single-molecule localization microscopy. PLoS Comput Biol 16

    Google Scholar 

  128. Nan X, Collisson EA, Lewis S, Huang J, Tamguney TM et al (2013) Single-molecule superresolution imaging allows quantitative analysis of RAF multimer formation and signaling. Proc Natl Acad Sci U S A 110:18519–18524

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Endesfelder U, Finan K, Holden SJ, Cook PR, Kapanidis AN, Heilemann M (2013) Multiscale spatial organization of RNA polymerase in Escherichia coli. Biophys J 105:172–181

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Rubin-Delanchy P, Burn GL, Griffie J, Williamson DJ, Heard NA et al (2015) Bayesian cluster identification in single-molecule localization microscopy data. Nat Methods 12:1072–1076

    Article  CAS  PubMed  Google Scholar 

  131. Griffie J, Shlomovich L, Williamson DJ, Shannon M, Aaron J et al (2017) 3D Bayesian cluster analysis of super-resolution data reveals LAT recruitment to the T cell synapse. Sci Rep-UK 7

    Google Scholar 

  132. Levet F, Hosy E, Kechkar A, Butler C, Beghin A et al (2015) SR-Tesseler: a method to segment and quantify localization-based super-resolution microscopy data. Nat Methods 12:1065–1071

    Article  CAS  PubMed  Google Scholar 

  133. Andronov L, Orlov I, Lutz Y, Vonesch JL, Klaholz BP (2016) ClusterViSu, a method for clustering of protein complexes by Voronoi tessellation in super-resolution microscopy. Sci Rep 6:24084

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Andronov L, Michalon J, Ouararhni K, Orlov I, Hamiche A et al (2018) 3DClusterViSu: 3D clustering analysis of super-resolution microscopy data by 3D Voronoi tessellations. Bioinformatics 34:3004–3012

    Article  CAS  PubMed  Google Scholar 

  135. Okabe A (2000) Spatial tessellations: concepts and applications of Voronoi diagrams. Wiley, Chichester; New York. xii, 671 p.

    Book  Google Scholar 

  136. Williamson DJ, Burn GL, Simoncelli S, Griffie J, Peters R et al (2020) Machine learning for cluster analysis of localization microscopy data. Nat Commun 11:1493

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Khater IM, Meng F, Nabi IR, Hamarneh G (2019) Identification of caveolin-1 domain signatures via machine learning and graphlet analysis of single-molecule super-resolution data. Bioinformatics 35:3468–3475

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Khater IM, Meng F, Wong TH, Nabi IR, Hamarneh G (2018) Super resolution network analysis defines the molecular architecture of caveolae and caveolin-1 scaffolds. Sci Rep 8:9009

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  139. Wong TH, Khater IM, Joshi B, Shahsavari M, Hamarneh G, Nabi IR (2021) Single molecule network analysis identifies structural changes to caveolae and scaffolds due to mutation of the caveolin-1 scaffolding domain. Sci Rep 11:7810

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Jimenez A, Friedl K, Leterrier C (2020) About samples, giving examples: optimized single molecule localization microscopy. Methods 174:100–114

    Article  CAS  PubMed  Google Scholar 

  141. Baumgart F, Arnold AM, Leskovar K, Staszek K, Folser M et al (2016) Varying label density allows artifact-free analysis of membrane-protein nanoclusters. Nat Methods 13:661–664

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Backlund MP, Joyner R, Moerner WE (2015) Chromosomal locus tracking with proper accounting of static and dynamic errors. Phys Rev E Stat Nonlinear Soft Matter Phys 91:062716

    Article  Google Scholar 

  143. Amitai A, Seeber A, Gasser SM, Holcman D (2017) Visualization of chromatin decompaction and break site extrusion as predicted by statistical polymer modeling of single-locus trajectories. Cell Rep 18:1200–1214

    Article  CAS  PubMed  Google Scholar 

  144. Hauer MH, Seeber A, Singh V, Thierry R, Sack R et al (2017) Histone degradation in response to DNA damage enhances chromatin dynamics and recombination rates. Nat Struct Mol Biol 24:99–107

    Article  CAS  PubMed  Google Scholar 

  145. Saxton MJ, Jacobson K (1997) Single-particle tracking: applications to membrane dynamics. Annu Rev Bioph Biom 26:373–399

    Article  CAS  Google Scholar 

  146. Holcman D, Hoze N, Schuss Z (2015) Analysis and interpretation of superresolution single-particle trajectories. Biophys J 109:1761–1771

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Shukron O, Seeber A, Amitai A, Holcman D (2019) Advances using single-particle trajectories to reconstruct chromatin organization and dynamics. Trends Genet 35:685–705

    Article  CAS  PubMed  Google Scholar 

  148. Amitai A, Holcman D (2017) Polymer physics of nuclear organization and function. Phys Rep 678:1–83

    Article  CAS  Google Scholar 

  149. Reingruber J, Holcman D (2011) Transcription factor search for a DNA promoter in a three-state model. Phys Rev E Stat Nonlinear Soft Matter Phys 84:020901

    Article  CAS  Google Scholar 

  150. Hoze N, Holcman D (2015) Recovering a stochastic process from super-resolution noisy ensembles of single-particle trajectories. Phys Rev E Stat Nonlinear Soft Matter Phys 92:052109

    Article  CAS  Google Scholar 

  151. Persson F, Linden M, Unoson C, Elf J (2013) Extracting intracellular diffusive states and transition rates from single-molecule tracking data. Nat Methods 10:265–269

    Article  PubMed  Google Scholar 

  152. Monnier N, Barry Z, Park HY, Su KC, Katz Z et al (2015) Inferring transient particle transport dynamics in live cells. Nat Methods 12:838–840

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Hoze N, Holcman D (2017) Statistical methods for large ensembles of super-resolution stochastic single particle trajectories in cell biology. Annu Rev Stat Appl 4:189–223

    Article  Google Scholar 

  154. Weimann L, Ganzinger KA, McColl J, Irvine KL, Davis SJ et al (2013) A quantitative comparison of single-dye tracking analysis tools using Monte Carlo simulations. PLoS One 8

    Google Scholar 

  155. Schwarz G (1978) Estimating the dimension of a model. Ann Stat 6:461–464

    Article  Google Scholar 

  156. Lagerholm BC, Andrade DM, Clausen MP, Eggeling C (2017) Convergence of lateral dynamic measurements in the plasma membrane of live cells from single particle tracking and STED-FCS. J Phys D Appl Phys 50:063001

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  157. Huang F, Schwartz SL, Byars JM, Lidke KA (2011) Simultaneous multiple-emitter fitting for single molecule super-resolution imaging. Biomed Opt Express 2:1377–1393

    Article  PubMed  PubMed Central  Google Scholar 

  158. Holden SJ, Uphoff S, Kapanidis AN (2011) DAOSTORM: an algorithm for high- density super-resolution microscopy. Nat Methods 8:279–280

    Article  CAS  PubMed  Google Scholar 

  159. Babcock H, Sigal YM, Zhuang X (2012) A high-density 3D localization algorithm for stochastic optical reconstruction microscopy. Opt Nanoscopy 1

    Google Scholar 

  160. Ovesny M, Krizek P, Borkovec J, Svindrych Z, Hagen GM (2014) ThunderSTORM: a comprehensive ImageJ plug-in for PALM and STORM data analysis and super-resolution imaging. Bioinformatics 30:2389–2390

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Mukamel EA, Babcock H, Zhuang X (2012) Statistical deconvolution for superresolution fluorescence microscopy. Biophys J 102:2391–2400

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Min J, Vonesch C, Kirshner H, Carlini L, Olivier N et al (2014) FALCON: fast and unbiased reconstruction of high-density super-resolution microscopy data. Sci Rep 4:4577

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  163. Babcock HP, Moffitt JR, Cao Y, Zhuang X (2013) Fast compressed sensing analysis for super-resolution imaging using L1-homotopy. Opt Express 21:28583–28596

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  164. Cox S, Rosten E, Monypenny J, Jovanovic-Talisman T, Burnette DT et al (2011) Bayesian localization microscopy reveals nanoscale podosome dynamics. Nat Methods 9:195–200

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  165. Hu YS, Nan X, Sengupta P, Lippincott-Schwartz J, Cang H (2013) Accelerating 3B single-molecule super-resolution microscopy with cloud computing. Nat Methods 10:96–97

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Marsh RJ, Pfisterer K, Bennett P, Hirvonen LM, Gautel M et al (2018) Artifact-free high-density localization microscopy analysis. Nat Methods 15:689–692

    Article  CAS  PubMed  Google Scholar 

  167. Nehme E, Freedman D, Gordon R, Ferdman B, Weiss LE et al (2020) DeepSTORM3D: dense 3D localization microscopy and PSF design by deep learning. Nat Methods 17:734–740

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Li B, Ponjavic A, Chen WH, Hopkins L, Hughes C et al (2021) Single-molecule light-sheet microscopy with local nanopipette delivery. Anal Chem 93:4092–4099

    Article  CAS  PubMed  Google Scholar 

  169. Festuccia N, Owens N, Papadopoulou T, Gonzalez I, Tachtsidi A et al (2019) Transcription factor activity and nucleosome organization in mitosis. Genome Res 29:250–260

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Stanly TA, Fritzsche M, Banerji S, Garcia E, Bernardino de la Serna J et al (2016) Critical importance of appropriate fixation conditions for faithful imaging of receptor microclusters. Biol Open 5:1343–1350

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The manuscript was written by MS, IA, SES, VC, AP, DH, and SB. The figures shown were made by MS, IA, and VC. We would like to thank the Trinity College Stem-Cell Medicine Senior Postdoctoral Researcher Fund and the Wellcome Trust/MRC Cambridge Stem Cell Intitute for funding SB. We thank the Wellcome Trust 4-Year PhD Programme in Stem Cell Biology and Medicine for funding MS. SS is funded by a Joint Research Grant from the Isaac Newton Trust, Wellcome Trust ISSF, University of Cambridge, and the CSCI Wellcome Trust seed fund. Finally, we would like to thank Yi Lei Tan, Edward J.R. Taylor, Prof Ernest D. Laue, and Dr. Steven F. Lee for contributions to an earlier version of this book chapter. We would like to thank Prof Ernest D. Laue and Prof Sir David Klenerman for generous use of the microscopes on which these images were collected.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Aleks Ponjavic or Srinjan Basu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Steindel, M. et al. (2022). Studying the Dynamics of Chromatin-Binding Proteins in Mammalian Cells Using Single-Molecule Localization Microscopy. In: Leake, M.C. (eds) Chromosome Architecture. Methods in Molecular Biology, vol 2476. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2221-6_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2221-6_16

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2220-9

  • Online ISBN: 978-1-0716-2221-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics