Skip to main content

Functional Studies of Genetic Variants Associated with Human Diseases in Notch Signaling-Related Genes Using Drosophila

  • Protocol
  • First Online:
Notch Signaling Research

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2472))

Abstract

Rare variants in the many genes related to Notch signaling cause diverse Mendelian diseases that affect myriad organ systems. In addition, genome- and exome-wide association studies have linked common and rare variants in Notch-related genes to common diseases and phenotypic traits. Moreover, somatic mutations in these genes have been observed in many types of cancer, some of which are classified as oncogenic and others as tumor suppressive. While functional characterization of some of these variants has been performed through experimental studies, the number of “variants of unknown significance” identified in patients with diverse conditions keeps increasing as high-throughput sequencing technologies become more commonly used in the clinic. Furthermore, as disease gene discovery efforts identify rare variants in human genes that have yet to be linked to a disease, the demand for functional characterization of variants in these “genes of unknown significance” continues to increase. In this chapter, we describe a workflow to functionally characterize a rare variant in a Notch signaling related gene that was found to be associated with late-onset Alzheimer’s disease. This pipeline involves informatic analysis of the variant of interest using diverse human and model organism databases, followed by in vivo experiments in the fruit fly Drosophila melanogaster. The protocol described here can be used to study variants that affect amino acids that are not conserved between human and fly. By “humanizing” the almondex gene in Drosophila with mutant alleles and heterologous genomic rescue constructs, a missense variant in TM2D3 (TM2 Domain Containing 3) was shown to be functionally damaging. This, and similar approaches, greatly facilitate functional interpretations of genetic variants in the human genome and propel personalized medicine.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kopan R, Ilagan MXG (2009) The canonical Notch signaling pathway: unfolding the activation mechanism. Cell 137:216–233

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  2. Ables JL, Breunig JJ, Eisch AJ et al (2011) Not(ch) just development: Notch signalling in the adult brain. Nat Rev Neurosci 12:269–283

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  3. Yamamoto S, Schulze KL, Bellen HJ (2014) Introduction to Notch signaling. Methods Mol Biol 1187:1–14

    Article  PubMed  CAS  Google Scholar 

  4. Artavanis-Tsakonas S, Muskavitch MAT (2010) Notch: the past, the present, and the future, Notch signaling. Elsevier, Amsterdam, pp 1–29

    Book  Google Scholar 

  5. Greenwald I (2012) Notch and the awesome power of genetics. Genetics 191:655–669

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Louvi A, Artavanis-Tsakonas S (2012) Notch and disease: a growing field. Semin Cell Dev Biol 23:473–480

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. Ho DM, Artavanis-Tsakonas S, Louvi A (2020) The Notch pathway in CNS homeostasis and neurodegeneration. Wiley interdisciplinary reviews. Dev Biol 9:e358

    Google Scholar 

  8. Mašek J, Andersson ER (2017) The developmental biology of genetic Notch disorders. Development 144:1743–1763

    Article  PubMed  CAS  Google Scholar 

  9. Salazar JL, Yamamoto S (2018) Integration of drosophila and human genetics to understand notch signaling related diseases. Adv Exp Med Biol 1066:141–185

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Hassed S, Li S, Mulvihill J et al (2017) Adams-Oliver syndrome review of the literature: refining the diagnostic phenotype. Am J Med Genet A 173:790–800

    Article  PubMed  CAS  Google Scholar 

  11. Gilbert MA, Spinner NB (2017) Alagille syndrome: genetics and functional models. Curr Pathobiol Rep 5:233–241

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Nóbrega A, Maia-Fernandes AC, Andrade RP (2021) Altered cogs of the clock: insights into the embryonic etiology of spondylocostal dysostosis. J Dev Biol 9

    Google Scholar 

  13. Mizuno T, Mizuta I, Watanabe-Hosomi A et al (2020) Clinical and genetic aspects of CADASIL. Front Aging Neurosci 12:91

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Selkoe DJ, Hardy J (2016) The amyloid hypothesis of Alzheimer’s disease at 25 years. EMBO Mol Med 8:595–608

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Splinter K, Adams DR, Bacino CA et al (2018) Effect of genetic diagnosis on patients with previously undiagnosed disease. N Engl J Med 379:2131–2139

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Posey JE, O’Donnell-Luria AH, Chong JX et al (2019) Insights into genetics, human biology and disease gleaned from family based genomic studies. Genet Med 21:798–812

    Article  PubMed  PubMed Central  Google Scholar 

  17. Fischer-Zirnsak B, Segebrecht L, Schubach M et al (2019) Haploinsufficiency of the notch ligand DLL1 causes variable neurodevelopmental disorders. Am J Hum Genet 105:631–639

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Chong JX, Buckingham KJ, Jhangiani SN et al (2015) The genetic basis of mendelian phenotypes: discoveries, challenges, and opportunities. Am J Hum Genet 97:199–215

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Simpson MA, Irving MD, Asilmaz E et al (2011) Mutations in NOTCH2 cause Hajdu-Cheney syndrome, a disorder of severe and progressive bone loss. Nat Genet 43:303–305

    Article  PubMed  CAS  Google Scholar 

  20. Isidor B, Lindenbaum P, Pichon O et al (2011) Truncating mutations in the last exon of NOTCH2 cause a rare skeletal disorder with osteoporosis. Nat Genet 43:306–308

    Article  PubMed  CAS  Google Scholar 

  21. McDaniell R, Warthen DM, Sanchez-Lara PA et al (2006) NOTCH2 mutations cause Alagille syndrome, a heterogeneous disorder of the NOTCH signaling pathway. Am J Hum Genet 79:169–173

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Gripp KW, Robbins KM, Sobreira NL et al (2015) Truncating mutations in the last exon of NOTCH3 cause lateral meningocele syndrome. Am J Med Genet A 167A:271–281

    Article  PubMed  CAS  Google Scholar 

  23. Martignetti JA, Tian L, Li D et al (2013) Mutations in PDGFRB cause autosomal-dominant infantile myofibromatosis. Am J Hum Genet 92:1001–1007

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Stevens DL, Hewlett RH, Brownell B (1977) Chronic familial vascular encephalopathy. Lancet 1:1364–1365

    Article  PubMed  CAS  Google Scholar 

  25. Joutel A, Corpechot C, Ducros A et al (1996) Notch3 mutations in CADASIL, a hereditary adult-onset condition causing stroke and dementia. Nature 383:707–710

    Article  PubMed  CAS  Google Scholar 

  26. Bamshad MJ, Nickerson DA, Chong JX (2019) Mendelian gene discovery: fast and furious with no end in sight. Am J Hum Genet 105:448–455

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Baldridge D, Wangler MF, Bowman AN et al (2021) Model organisms contribute to diagnosis and discovery in the undiagnosed diseases network: current state and a future vision. Orphanet J Rare Dis 16:206

    Article  PubMed  PubMed Central  Google Scholar 

  28. Wei J, Hemmings GP (2000) The NOTCH4 locus is associated with susceptibility to schizophrenia. Nat Genet 25:376–377

    Article  PubMed  CAS  Google Scholar 

  29. Qu J, Qu H-Q, Bradfield JP et al (2021) Association of DLL1 with type 1 diabetes in patients characterized by low polygenic risk score. Metab Clin Exp 114:154418

    Article  PubMed  CAS  Google Scholar 

  30. Kunkle BW, Grenier-Boley B, Sims R et al (2019) Genetic meta-analysis of diagnosed Alzheimer’s disease identifies new risk loci and implicates Aβ, tau, immunity and lipid processing. Nat Genet 51:414–430

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Patel D, Mez J, Vardarajan BN et al (2019) Association of rare coding mutations with alzheimer disease and other dementias among adults of European Ancestry. JAMA Netw Open 2:e191350

    Article  PubMed  PubMed Central  Google Scholar 

  32. Pairo-Castineira E, Clohisey S, Klaric L et al (2021) Genetic mechanisms of critical illness in COVID-19. Nature 591:92–98

    Article  PubMed  CAS  Google Scholar 

  33. Jakobsdottir J, van der Lee SJ, Bis JC et al (2016) Rare functional variant in TM2D3 is associated with late-onset Alzheimer’s disease. PLoS Genet 12:e1006327

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Zhou X, Li H, Guo S et al (2019) Associations of multiple NOTCH4 exonic variants with systemic sclerosis. J Rheumatol 46:184–189

    Article  PubMed  CAS  Google Scholar 

  35. All of Us Research Program Investigators, Denny JC, Rutter JL et al (2019) The “All of Us” Research Program. N Engl J Med 381:668–676

    Article  Google Scholar 

  36. Lichou F, Trynka G (2020) Functional studies of GWAS variants are gaining momentum. Nat Commun 11:6283

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Aster JC, Pear WS, Blacklow SC (2017) The varied roles of notch in cancer. Annu Rev Pathol 12:245–275

    Article  PubMed  CAS  Google Scholar 

  38. Lobry C, Oh P, Mansour MR et al (2014) Notch signaling: switching an oncogene to a tumor suppressor. Blood 123:2451–2459

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Yamamoto S (2020) Making sense out of missense mutations: mechanistic dissection of Notch receptors through structure-function studies in Drosophila. Develop Growth Differ 62:15–34

    Article  Google Scholar 

  40. Weng AP, Ferrando AA, Lee W et al (2004) Activating mutations of NOTCH1 in human T cell acute lymphoblastic leukemia. Science 306:269–271

    Article  PubMed  CAS  Google Scholar 

  41. Wang NJ, Sanborn Z, Arnett KL et al (2011) Loss-of-function mutations in Notch receptors in cutaneous and lung squamous cell carcinoma. Proc Natl Acad Sci U S A 108:17761–17766

    Article  PubMed  PubMed Central  Google Scholar 

  42. Katoh M, Katoh M (2020) Precision medicine for human cancers with Notch signaling dysregulation (review). Int J Mol Med 45:279–297

    PubMed  CAS  Google Scholar 

  43. Ilagan MXG, Kopan R (2014) Monitoring Notch activation in cultured mammalian cells: transcriptional reporter assays. Methods Mol Biol 1187:143–154

    Article  PubMed  CAS  Google Scholar 

  44. Ilagan MXG, Kopan R (2014) Monitoring Notch activation in cultured mammalian cells: luciferase complementation imaging assays. Methods Mol Biol 1187:155–168

    Article  PubMed  CAS  Google Scholar 

  45. Serneels L, Tesseur I, De Strooper B (2014) Assay to probe proteolytic processing of Notch by γ-secretase. Methods Mol Biol 1187:223–229

    Article  PubMed  CAS  Google Scholar 

  46. Gridley T, Groves AK (2014) Overview of genetic tools and techniques to study Notch signaling in mice. Methods Mol Biol 1187:47–61

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  47. Marathe S, Alberi L (2014) Monitoring Notch activity in the mouse. Methods Mol Biol 1187:115–129

    Article  PubMed  CAS  Google Scholar 

  48. Justice MJ, Dhillon P (2016) Using the mouse to model human disease: increasing validity and reproducibility. Dis Model Mech 9:101–103

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  49. Clark JF, Dinsmore CJ, Soriano P (2020) A most formidable arsenal: genetic technologies for building a better mouse. Genes Dev 34:1256–1286

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  50. Wangler MF, Yamamoto S, Chao H-T et al (2017) Model organisms facilitate rare disease diagnosis and therapeutic research. Genetics 207:9–27

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  51. Boycott KM, Campeau PM, Howley HE et al (2020) The Canadian rare diseases models and mechanisms (RDMM) network: connecting understudied genes to model organisms. Am J Hum Genet 106:143–152

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  52. Bellen HJ, Yamamoto S (2015) Morgan’s legacy: fruit flies and the functional annotation of conserved genes. Cell 163:12–14

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  53. Venken KJT, Sarrion-Perdigones A, Vandeventer PJ et al (2016) Genome engineering: Drosophila melanogaster and beyond. Wiley interdisciplinary reviews. Dev Biol 5:233–267

    CAS  Google Scholar 

  54. Kanca O, Bellen HJ, Schnorrer F (2017) Gene tagging strategies to assess protein expression, localization, and function in drosophila. Genetics 207:389–412

    PubMed  PubMed Central  CAS  Google Scholar 

  55. Bellen HJ, Wangler MF, Yamamoto S (2019) The fruit fly at the interface of diagnosis and pathogenic mechanisms of rare and common human diseases. Hum Mol Genet 28:R207–R214

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  56. Larkin A, Marygold SJ, Antonazzo G et al (2021) FlyBase: updates to the Drosophila melanogaster knowledge base. Nucleic Acids Res 49:D899–D907

    Article  PubMed  CAS  Google Scholar 

  57. Greenspan RJ (2004) Fly pushing: the theory and practice of drosophila genetics. Cold Spring Harbor Laboratory Press, Cold Spring Harbor

    Google Scholar 

  58. Dahmann C (2018) Drosophila: methods and protocols. Springer, New York

    Google Scholar 

  59. Ashburn MD, Golic KG, Hawley RS (2005) Drosophila: a laboratory handbook. Cold Spring Harbor Laboratory Press, Cold Spring Harbor

    Google Scholar 

  60. Ghosh R, Oak N, Plon SE (2017) Evaluation of in silico algorithms for use with ACMG/AMP clinical variant interpretation guidelines. Genome Biol 18:225

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  61. Coban-Akdemir Z, White JJ, Song X et al (2018) Identifying genes whose mutant transcripts cause dominant disease traits by potential gain-of-function alleles. Am J Hum Genet 103:171–187

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  62. Katsonis P, Koire A, Wilson SJ et al (2014) Single nucleotide variations: biological impact and theoretical interpretation. Protein Sci 23:1650–1666

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  63. Muller HJ (1932) Further studies on the nature and causes of gene mutations. In: International congress on genetics, vol 6.1, pp 213–255

    Google Scholar 

  64. Manolio TA, Fowler DM, Starita LM et al (2017) Bedside back to bench: building bridges between basic and clinical genomic research. Cell 169:6–12

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  65. Sawyer SL, Hartley T, Dyment DA et al (2016) Utility of whole-exome sequencing for those near the end of the diagnostic odyssey: time to address gaps in care. Clin Genet 89:275–284

    Article  PubMed  CAS  Google Scholar 

  66. Eldomery MK, Coban-Akdemir Z, Harel T et al (2017) Lessons learned from additional research analyses of unsolved clinical exome cases. Genome Med 9:26

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  67. Ma X, Shao Y, Tian L et al (2019) Analysis of error profiles in deep next-generation sequencing data. Genome Biol 20:50

    Article  PubMed  PubMed Central  Google Scholar 

  68. Tam V, Patel N, Turcotte M et al (2019) Benefits and limitations of genome-wide association studies. Nat Rev Genet 20:467–484

    Article  PubMed  CAS  Google Scholar 

  69. Wang J, Al-Ouran R, Hu Y et al (2017) MARRVEL: integration of human and model organism genetic resources to facilitate functional annotation of the human genome. Am J Hum Genet 100:843–853

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  70. Karczewski KJ, Francioli LC, Tiao G et al (2020) The mutational constraint spectrum quantified from variation in 141,456 humans. Nature 581:434–443

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  71. Landrum MJ, Chitipiralla S, Brown GR et al (2020) ClinVar: improvements to accessing data. Nucleic Acids Res 48:D835–D844

    Article  PubMed  CAS  Google Scholar 

  72. Bragin E, Chatzimichali EA, Wright CF et al (2014) DECIPHER: database for the interpretation of phenotype-linked plausibly pathogenic sequence and copy-number variation. Nucleic Acids Res 42:D993–D1000

    Article  PubMed  CAS  Google Scholar 

  73. Rentzsch P, Witten D, Cooper GM et al (2019) CADD: predicting the deleteriousness of variants throughout the human genome. Nucleic Acids Res 47:D886–D894

    Article  PubMed  CAS  Google Scholar 

  74. Ioannidis NM, Rothstein JH, Pejaver V et al (2016) REVEL: an ensemble method for predicting the pathogenicity of rare missense variants. Am J Hum Genet 99:877–885

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  75. Amberger JS, Bocchini CA, Scott AF et al (2019) OMIM.org: leveraging knowledge across phenotype-gene relationships. Nucleic Acids Res 47:D1038–D1043

    Article  PubMed  CAS  Google Scholar 

  76. Wang J, Liu Z, Bellen HJ et al (2019) Navigating MARRVEL, a web-based tool that integrates human genomics and model organism genetics information. J Vis Exp (150). https://doi.org/10.3791/59542

  77. Wang J, Mao D, Fazal F et al (2019) Using MARRVEL v1.2 for bioinformatics analysis of human genes and variant pathogenicity. Curr Protoc Bioinformatics 67:e85

    Article  PubMed  PubMed Central  Google Scholar 

  78. Hu Y, Flockhart I, Vinayagam A et al (2011) An integrative approach to ortholog prediction for disease-focused and other functional studies. BMC Bioinformatics 12:357

    Article  PubMed  PubMed Central  Google Scholar 

  79. Shefchek KA, Harris NL, Gargano M et al (2020) The Monarch Initiative in 2019: an integrative data and analytic platform connecting phenotypes to genotypes across species. Nucleic Acids Res 48:D704–D715

    Article  PubMed  CAS  Google Scholar 

  80. Alliance of Genome Resources Consortium (2020) Alliance of Genome Resources Portal: unified model organism research platform. Nucleic Acids Res 48:D650–D658

    Article  CAS  Google Scholar 

  81. Hu Y, Comjean A, Mohr SE et al (2017) Gene2function: an integrated online resource for gene function discovery. G3 (Bethesda MD) 7:2855–2858

    Article  CAS  Google Scholar 

  82. Harnish JM, Deal SL, Chao H-T et al (2019) In vivo functional study of disease-associated rare human variants using Drosophila. J Vis Exp (150). https://doi.org/10.3791/59658

  83. Housden BE, Perrimon N (2016) Design and generation of donor constructs for genome engineering in Drosophila. Cold Spring Harbor Protoc (9). https://doi.org/10.1101/pdb.prot090787. https://pubmed.ncbi.nlm.nih.gov/27587780/

  84. Li-Kroeger D, Kanca O, Lee P-T et al (2018) An expanded toolkit for gene tagging based on MiMIC and scarless CRISPR tagging in Drosophila. eLife 7:e38709

    Article  PubMed  PubMed Central  Google Scholar 

  85. Psaty BM, O’Donnell CJ, Gudnason V et al (2009) Cohorts for Heart and Aging Research in Genomic Epidemiology (CHARGE) Consortium: design of prospective meta-analyses of genome-wide association studies from 5 cohorts. Circ Cardiovasc Genet 2:73–80

    Article  PubMed  PubMed Central  Google Scholar 

  86. Grove ML, Yu B, Cochran BJ et al (2013) Best practices and joint calling of the HumanExome BeadChip: the CHARGE Consortium. PLoS One 8:e68095

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  87. Sims R, Hill M, Williams J (2020) The multiplex model of the genetics of Alzheimer’s disease. Nat Neurosci 23:311–322

    Article  PubMed  CAS  Google Scholar 

  88. Ebenesersdóttir SS, Sandoval-Velasco M, Gunnarsdóttir ED et al (2018) Ancient genomes from Iceland reveal the making of a human population. Science 360:1028–1032

    Article  PubMed  CAS  Google Scholar 

  89. Shannon MP (1972) Characterization of the female-sterile mutant almondex of Drosophila melanogaster. Genetica 43:244–256

    Article  PubMed  CAS  Google Scholar 

  90. Green MM, Green KC (1956) A cytogenetic analysis of the lozenge pseudoalleles in Drosophila. Zeitschrift fur induktive Abstammungs- und Vererbungslehre 87:708–721

    PubMed  CAS  Google Scholar 

  91. Lehmann R, Jiménez F, Dietrich U et al (1983) On the phenotype and development of mutants of early neurogenesis inDrosophila melanogaster. Wilhelm Rouxs Arch Dev Biol 192:62–74

    Article  Google Scholar 

  92. de-la-Concha A, Dietrich U, Weigel D et al (1988) Functional interactions of neurogenic genes of Drosophila melanogaster. Genetics 118:499–508

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  93. Michellod M-A, Forquignon F, Santamaria P et al (2003) Differential requirements for the neurogenic gene almondex during Drosophila melanogaster development. Genesis 37:113–122

    Article  PubMed  CAS  Google Scholar 

  94. Michellod M-A, Randsholt NB (2008) Implication of the Drosophila beta-amyloid peptide binding-like protein AMX in Notch signaling during early neurogenesis. Brain Res Bull 75:305–309

    Article  PubMed  CAS  Google Scholar 

  95. Sherrington R, Rogaev EI, Liang Y et al (1995) Cloning of a gene bearing missense mutations in early-onset familial Alzheimer’s disease. Nature 375:754–760

    Article  PubMed  CAS  Google Scholar 

  96. Rogaev EI, Sherrington R, Rogaeva EA et al (1995) Familial Alzheimer’s disease in kindreds with missense mutations in a gene on chromosome 1 related to the Alzheimer’s disease type 3 gene. Nature 376:775–778

    Article  PubMed  CAS  Google Scholar 

  97. McQuilton P, St Pierre SE, Thurmond J et al (2012) FlyBase 101--the basics of navigating FlyBase. Nucleic Acids Res 40:D706–D714

    Article  PubMed  CAS  Google Scholar 

  98. Gratz SJ, Cummings AM, Nguyen JN et al (2013) Genome engineering of Drosophila with the CRISPR RNA-guided Cas9 nuclease. Genetics 194:1029–1035

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  99. Bassett AR, Tibbit C, Ponting CP et al (2013) Highly efficient targeted mutagenesis of Drosophila with the CRISPR/Cas9 system. Cell Rep 4:220–228

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  100. Yu Z, Ren M, Wang Z et al (2013) Highly efficient genome modifications mediated by CRISPR/Cas9 in Drosophila. Genetics 195:289–291

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  101. Kondo S, Ueda R (2013) Highly improved gene targeting by germline-specific Cas9 expression in Drosophila. Genetics 195:715–721

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  102. Kanca O, Andrews JC, Lee P-T et al (2019) De novo variants in WDR37 are associated with epilepsy, Colobomas, dysmorphism, developmental delay, intellectual disability, and cerebellar hypoplasia. Am J Hum Genet 105:413–424

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  103. Gratz SJ, Ukken FP, Rubinstein CD et al (2014) Highly specific and efficient CRISPR/Cas9-catalyzed homology-directed repair in Drosophila. Genetics 196:961–971

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  104. Wiedenheft B, Sternberg SH, Doudna JA (2012) RNA-guided genetic silencing systems in bacteria and archaea. Nature 482:331–338

    Article  PubMed  CAS  Google Scholar 

  105. Housden BE, Valvezan AJ, Kelley C et al (2015) Identification of potential drug targets for tuberous sclerosis complex by synthetic screens combining CRISPR-based knockouts with RNAi. Sci Signal 8:rs9

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  106. Haelterman NA, Jiang L, Li Y et al (2014) Large-scale identification of chemically induced mutations in Drosophila melanogaster. Genome Res 24:1707–1718

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  107. Port F, Chen H-M, Lee T et al (2014) Optimized CRISPR/Cas tools for efficient germline and somatic genome engineering in Drosophila. Proc Natl Acad Sci U S A 111:E2967–E2976

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  108. Engler C, Kandzia R, Marillonnet S (2008) A one pot, one step, precision cloning method with high throughput capability. PLoS One 3:e3647

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  109. Casini A, Storch M, Baldwin GS et al (2015) Bricks and blueprints: methods and standards for DNA assembly. Nat Rev Mol Cell Biol 16:568–576

    Article  PubMed  CAS  Google Scholar 

  110. Marillonnet S, Werner S (2015) Assembly of multigene constructs using golden gate cloning. Methods Mol Biol 1321:269–284

    Article  PubMed  Google Scholar 

  111. Marillonnet S, Grützner R (2020) Synthetic DNA assembly using golden gate cloning and the hierarchical modular cloning pipeline. Curr Protoc Mol Biol 130:e115

    Article  PubMed  CAS  Google Scholar 

  112. Mukherjee M, Caroll E, Wang ZQ (2021) Rapid assembly of multi-gene constructs using modular golden gate cloning. J Vis Exp (168). https://doi.org/10.3791/61993. https://pubmed.ncbi.nlm.nih.gov/33616121/

  113. Gibson DG, Young L, Chuang R-Y et al (2009) Enzymatic assembly of DNA molecules up to several hundred kilobases. Nat Methods 6:343–345

    Article  PubMed  CAS  Google Scholar 

  114. Bachmann A, Knust E (2008) The use of P-element transposons to generate transgenic flies. Methods Mol Biol 420:61–77

    Article  PubMed  CAS  Google Scholar 

  115. Brand AH, Perrimon N (1993) Targeted gene expression as a means of altering cell fates and generating dominant phenotypes. Development 118:401–415

    Article  PubMed  CAS  Google Scholar 

  116. Lee P-T, Zirin J, Kanca O et al (2018) A gene-specific T2A-GAL4 library for Drosophila. eLife 7:e35574

    Article  PubMed  PubMed Central  Google Scholar 

  117. Feng S, Lu S, Grueber WB et al (2021) Scarless engineering of the Drosophila genome near any site-specific integration site. Genetics 217:iyab012

    Article  PubMed  PubMed Central  Google Scholar 

  118. Venken KJT, Bellen HJ (2014) Chemical mutagens, transposons, and transgenes to interrogate gene function in Drosophila melanogaster. Methods 68:15–28

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  119. Bischof J, Björklund M, Furger E et al (2013) A versatile platform for creating a comprehensive UAS-ORFeome library in Drosophila. Development 140:2434–2442

    Article  PubMed  CAS  Google Scholar 

  120. Pirrotta V (1988) Vectors for P-mediated transformation in Drosophila. Biotechnology 10:437–456

    PubMed  CAS  Google Scholar 

  121. Venken KJT, He Y, Hoskins RA et al (2006) P[acman]: a BAC transgenic platform for targeted insertion of large DNA fragments in D. melanogaster. Science 314:1747–1751

    Article  PubMed  CAS  Google Scholar 

  122. Sarov M, Barz C, Jambor H et al (2016) A genome-wide resource for the analysis of protein localisation in Drosophila. eLife 5:e12068

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  123. Adams MD, Celniker SE, Holt RA et al (2000) The genome sequence of Drosophila melanogaster. Science 287:2185–2195

    Article  PubMed  Google Scholar 

  124. Venken KJT, Carlson JW, Schulze KL et al (2009) Versatile P[acman] BAC libraries for transgenesis studies in Drosophila melanogaster. Nat Methods 6:431–434

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  125. Salazar JL, Yang S.-A, Lin YQ et al (2021) Alzheimer’s disease-associated TM2D genes regulate Notch signaling and neuronal function in Drosophila. PLoS Genet 17:e1009962. https://doi.org/10.1371/journal.pgen.1009962. https://pubmed.ncbi.nlm.nih.gov/34905536/

  126. Muskavitch MA (1994) Delta-notch signaling and Drosophila cell fate choice. Dev Biol 166:415–430

    Article  PubMed  CAS  Google Scholar 

  127. Lehmann R, Dietrich U, Jiménez F et al (1981) Mutations of early neurogenesis inDrosophila. Wilhelm Rouxs Arch Dev Biol 190:226–229

    Article  Google Scholar 

Download references

Acknowledgments

J.L.S. received support from the National Institutes of Health (NIH) training grant T32GM008307. S.Y. received support from the NIH (R01AG071557), Alzheimer’s Association (NIRH-15-364099), and Nancy Chang PhD, Award for Research Excellence from Baylor College of Medicine related to the project discussed in this article. We thank J. Michael Harnish for providing useful feedback.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to David Li-Kroeger or Shinya Yamamoto .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Yang, SA., Salazar, J.L., Li-Kroeger, D., Yamamoto, S. (2022). Functional Studies of Genetic Variants Associated with Human Diseases in Notch Signaling-Related Genes Using Drosophila. In: Jia, D. (eds) Notch Signaling Research. Methods in Molecular Biology, vol 2472. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2201-8_19

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2201-8_19

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2200-1

  • Online ISBN: 978-1-0716-2201-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics