Skip to main content

Mass Spectrometry Imaging of Biological Tissues by Laser Desorption Ionization from Silicon Nanopost Arrays

  • Protocol
  • First Online:
Mass Spectrometry Imaging of Small Molecules

Abstract

Mass spectrometry imaging (MSI) plays an expanding role in the label-free spatial mapping of hundreds of molecules simultaneously. Currently, matrix-assisted laser desorption ionization (MALDI) is among the most widely adopted MSI techniques. However, matrix application can impact the fidelity of spatial distributions, and matrix selection and related spectral interferences in the low mass range can lead to biased molecular coverage. Nanophotonic ionization from silicon nanopost arrays (NAPA) is an emerging matrix-free MSI platform with enhanced sensitivity for several molecular classes, for example, neutral lipids and biooligomers. Here, we describe a protocol with minimal sample preparation for NAPA-MSI of metabolites, lipids, and biooligomers from biological tissues.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Samarah LZ, Vertes A (2020) Mass spectrometry imaging based on laser desorption ionization from inorganic and nanophotonic platforms. VIEW 1(4):20200063. https://doi.org/10.1002/VIW.20200063

    Article  Google Scholar 

  2. Buchberger AR, DeLaney K, Johnson J, Li LJ (2018) Mass spectrometry imaging: a review of emerging advancements and future insights. Anal Chem 90(1):240–265. https://doi.org/10.1021/acs.analchem.7b04733

    Article  CAS  PubMed  Google Scholar 

  3. Morris NJ, Anderson H, Thibeault B, Vertes A, Powell MJ, Razunguzwa TT (2015) Laser desorption ionization (LDI) silicon nanopost array chips fabricated using deep UV projection lithography and deep reactive ion etching. RSC Adv 5(88):72051–72057. https://doi.org/10.1039/c5ra11875a

    Article  CAS  Google Scholar 

  4. Shanta SR, Kim TY, Hong JH, Lee JH, Shin CY, Kim KH, Kim YH, Kim SK, Kim KP (2012) A new combination MALDI matrix for small molecule analysis: application to imaging mass spectrometry for drugs and metabolites. Analyst 137(24):5757–5762. https://doi.org/10.1039/c2an35782h

    Article  CAS  PubMed  Google Scholar 

  5. Dreisewerd K (2003) The desorption process in MALDI. Chem Rev 103(2):395–425. https://doi.org/10.1021/cr010375i

    Article  CAS  PubMed  Google Scholar 

  6. Garden RW, Sweedler JV (2000) Heterogeneity within MALDI samples as revealed by mass spectrometric imaging. Anal Chem 72(1):30–36. https://doi.org/10.1021/ac9908997

    Article  CAS  PubMed  Google Scholar 

  7. Lai YH, Cai YH, Lee H, Ou YM, Hsiao CH, Tsao CW, Chang HT, Wang YS (2016) Reducing spatial heterogeneity of MALDI samples with Marangoni flows during sample preparation. J Am Soc Mass Spectrom 27(8):1314–1321. https://doi.org/10.1007/s13361-016-1406-0

    Article  CAS  PubMed  Google Scholar 

  8. Kinumi T, Saisu T, Takayama M, Niwa H (2000) Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry using an inorganic particle matrix for small molecule analysis. J Mass Spectrom 35(3):417–422. https://doi.org/10.1002/(sici)1096-9888(200003)35:3<417::Aid-jms952>3.0.Co;2-#

    Article  CAS  PubMed  Google Scholar 

  9. Northen TR, Yanes O, Northen MT, Marrinucci D, Uritboonthai W, Apon J, Golledge SL, Nordstrom A, Siuzdak G (2007) Clathrate nanostructures for mass spectrometry. Nature 449(7165):1033–1036. https://doi.org/10.1038/nature06195

    Article  CAS  PubMed  Google Scholar 

  10. Shen ZX, Thomas JJ, Averbuj C, Broo KM, Engelhard M, Crowell JE, Finn MG, Siuzdak G (2001) Porous silicon as a versatile platform for laser desorption/ionization mass spectrometry. Anal Chem 73(3):612–619. https://doi.org/10.1021/ac000746f

    Article  CAS  PubMed  Google Scholar 

  11. Wei J, Buriak JM, Siuzdak G (1999) Desorption-ionization mass spectrometry on porous silicon. Nature 399(6733):243–246. https://doi.org/10.1038/20400

    Article  CAS  PubMed  Google Scholar 

  12. Xu SY, Li YF, Zou HF, Qiu JS, Guo Z, Guo BC (2003) Carbon nanotubes as assisted matrix for laser desorption/ionization time-of-flight mass spectrometry. Anal Chem 75(22):6191–6195. https://doi.org/10.1021/ac0345695

    Article  CAS  PubMed  Google Scholar 

  13. Walker BN, Razunguzwa T, Powell M, Knochenmuss R, Vertes A (2009) Nanophotonic ion production from silicon microcolumn arrays. Angew Chem Int Ed 48(9):1669–1672. https://doi.org/10.1002/anie.200805114

    Article  CAS  Google Scholar 

  14. Walker BN, Stolee JA, Vertes A (2012) Nanophotonic ionization for ultratrace and single-cell analysis by mass spectrometry. Anal Chem 84(18):7756–7762. https://doi.org/10.1021/ac301238k

    Article  CAS  PubMed  Google Scholar 

  15. Walker BN, Stolee JA, Pickel DL, Retterer ST, Vertes A (2010) Tailored silicon nanopost arrays for resonant nanophotonic ion production. J Phys Chem C 114(11):4835–4840. https://doi.org/10.1021/jp9110103

    Article  CAS  Google Scholar 

  16. Huang L, Wan JJ, Wei X, Liu Y, Huang JY, Sun XM, Zhang R, Gurav DD, Vedarethinam V, Li Y, Chen RP, Qian K (2017) Plasmonic silver nanoshells for drug and metabolite detection. Nat Commun 8:220. https://doi.org/10.1038/s41467-017-00220-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Su HY, Liu TT, Huang L, Huang JY, Cao J, Yang HQ, Ye J, Liu J, Qian K (2018) Plasmonic Janus hybrids for the detection of small metabolites. J Mater Chem B 6(44):7280–7287. https://doi.org/10.1039/c8tb01587b

    Article  CAS  PubMed  Google Scholar 

  18. Takats Z, Wiseman JM, Gologan B, Cooks RG (2004) Mass spectrometry sampling under ambient conditions with desorption electrospray ionization. Science 306(5695):471–473. https://doi.org/10.1126/science.1104404

    Article  CAS  PubMed  Google Scholar 

  19. Nemes P, Vertes A (2007) Laser ablation electrospray ionization for atmospheric pressure, in vivo, and imaging mass spectrometry. Anal Chem 79(21):8098–8106. https://doi.org/10.1021/ac071181r

    Article  CAS  PubMed  Google Scholar 

  20. Haapala M, Pol J, Saarela V, Arvola V, Kotiaho T, Ketola RA, Franssila S, Kauppila TJ, Kostiainen R (2007) Desorption atmospheric pressure photoionization. Anal Chem 79(20):7867–7872. https://doi.org/10.1021/ac071152g

    Article  CAS  PubMed  Google Scholar 

  21. Stopka SA, Rong C, Korte AR, Yadavilli S, Nazarian J, Razunguzwa TT, Morris NJ, Vertes A (2016) Molecular imaging of biological samples on nanophotonic laser desorption ionization platforms. Angew Chem Int Ed 55(14):4482–4486. https://doi.org/10.1002/anie.201511691

    Article  CAS  Google Scholar 

  22. Fincher JA, Korte AR, Dyer JE, Yadavilli S, Morris NJ, Jones DR, Shanmugam VK, Pirlo RK, Vertes A (2020) Mass spectrometry imaging of triglycerides in biological tissues by laser desorption ionization from silicon nanopost arrays. J Mass Spectrom 55(4):e4443. https://doi.org/10.1002/jms.4443

    Article  CAS  PubMed  Google Scholar 

  23. Samarah LZ, Tran TH, Stacey G, Vertes A (2021) Mass spectrometry imaging of biooligomer polydispersity in plant tissues by laser desorption ionization from silicon nanopost arrays. Angew Chem Int Ed 60(16):9071–9077. https://doi.org/10.1002/anie.202015251

    Article  CAS  Google Scholar 

  24. Feenstra AD, O’Neill KC, Yagnik GB, Lee YJ (2016) Organic-inorganic binary mixture matrix for comprehensive laser-desorption ionization mass spectrometric analysis and imaging of medium-size molecules including phospholipids, glycerolipids, and oligosaccharides. RSC Adv 6(101):99260–99268. https://doi.org/10.1039/c6ra20469d

    Article  CAS  Google Scholar 

  25. Nozaki K, Nakabayashi Y, Murakami T, Miyazato A, Osaka I (2019) Novel approach to enhance sensitivity in surface-assisted laser desorption/ionization mass spectrometry imaging using deposited organic-inorganic hybrid matrices. J Mass Spectrom 54(7):612–619. https://doi.org/10.1002/jms.4370

    Article  CAS  PubMed  Google Scholar 

  26. Fincher JA, Korte AR, Yadavilli S, Morris NJ, Vertes A (2020) Multimodal imaging of biological tissues using combined MALDI and NAPA-LDI mass spectrometry for enhanced molecular coverage. Analyst 145(21):6910–6918. https://doi.org/10.1039/d0an00836b

    Article  CAS  PubMed  Google Scholar 

  27. Samarah LZ, Tran TH, Stacey G, Vertes A (2020) In vivo chemical analysis of plant sap from the xylem and single parenchymal cells by capillary microsampling electrospray ionization mass spectrometry. Anal Chem 92(10):7299–7306. https://doi.org/10.1021/acs.analchem.0c00939

    Article  CAS  PubMed  Google Scholar 

  28. Stopka SA, Agtuca BJ, Koppenaal DW, Pasa-Tolic L, Stacey G, Vertes A, Anderton CR (2017) Laser-ablation electrospray ionization mass spectrometry with ion mobility separation reveals metabolites in the symbiotic interactions of soybean roots and rhizobia. Plant J 91(2):340–354. https://doi.org/10.1111/tpj.13569

    Article  CAS  PubMed  Google Scholar 

  29. Agtuca BJ, Stopka SA, Evans S, Samarah L, Liu Y, Xu D, Stacey MG, Koppenaal DW, Pasa-Tolic L, Anderton CR, Vertes A, Stacey G (2020) Metabolomic profiling of wild-type and mutant soybean root nodules using laser-ablation electrospray ionization mass spectrometry reveals altered metabolism. Plant J 103(5):1937–1958. https://doi.org/10.1111/tpj.14815

    Article  CAS  PubMed  Google Scholar 

  30. Essigmann B, Guler S, Narang RA, Linke D, Benning C (1998) Phosphate availability affects the thylakoid lipid composition and the expression of SQD1, a gene required for sulfolipid biosynthesis in Arabidopsis thaliana. Proc Natl Acad Sci U S A 95(4):1950–1955. https://doi.org/10.1073/pnas.95.4.1950

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Alves LPS, do Amaral FP, Kim D, Bom MT, Gavidia MP, Teixeira CS, Holthman F, Pedrosa FD, de Souza EM, Chubatsu LS, Muller-Santos M, Stacey G (2019) Importance of poly-3-hydroxybutyrate metabolism to the ability of Herbaspirillum seropedicae to promote plant growth. Appl Environ Microbiol 85(6):e02586–e02518. https://doi.org/10.1128/aem.02586-18

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work is supported by the US National Science Foundation, Plant Genome Program under grant no. IoS-1734145.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Laith Z. Samarah or Akos Vertes .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Samarah, L.Z., Vertes, A. (2022). Mass Spectrometry Imaging of Biological Tissues by Laser Desorption Ionization from Silicon Nanopost Arrays. In: Lee, YJ. (eds) Mass Spectrometry Imaging of Small Molecules. Methods in Molecular Biology, vol 2437. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2030-4_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2030-4_6

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2029-8

  • Online ISBN: 978-1-0716-2030-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics