Skip to main content

Live Imaging and Quantitative Analysis of Organelle Transport in Sensory Neurons of Aplysia Californica

  • Protocol
  • First Online:
Axonal Transport

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2431))

Abstract

Axonal transport moves proteins, RNAs, and organelles between the soma and synapses to support synaptic function and activity-dependent changes in synaptic strength. This transport is impaired in several neurodegenerative disorders such as Alzheimer’s disease. Thus, it is critical to understand the regulation and underlying mechanisms of the transport process. Aplysia californica provides a powerful experimental system for studying the interplay between synaptic activity and transport because its defined synaptic circuits can be built in-vitro. Advantages include precise pre- and postsynaptic manipulation, and high-resolution imaging of axonal transport. Here, we describe methodologies for the quantitative analysis of axonal transport in Aplysia sensory neurons.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Maday S, Twelvetrees AE, Moughamian AJ, Holzbaur ELF (2014) Axonal transport: cargo-specific mechanisms of motility and regulation. Neuron 84(2):292–309. Epub 2014/10/22. https://doi.org/10.1016/j.neuron.2014.10.019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Brown A (2013) Axonal transport. In: Pfaff DW (ed) Neuroscience in the 21st century: from basic to clinical. Springer, New York, NY, pp 255–308

    Chapter  Google Scholar 

  3. Roppongi RT, Champagne-Jorgensen KP, Siddiqui TJ (2017) Low-density primary hippocampal neuron culture. J Vis Exp 122:55000. https://doi.org/10.3791/55000

    Article  Google Scholar 

  4. Verstraelen P, Van Dyck M, Verschuuren M, Kashikar ND, Nuydens R, Timmermans J-P, De Vos WH (2018) Image-based profiling of synaptic connectivity in primary neuronal cell culture. Front Neurosci 12:389. https://doi.org/10.3389/fnins.2018.00389

    Article  PubMed  PubMed Central  Google Scholar 

  5. Letellier M, Levet F, Thoumine O, Goda Y (2019) Differential role of pre- and postsynaptic neurons in the activity-dependent control of synaptic strengths across dendrites. PLoS Biol 17(6):e2006223. https://doi.org/10.1371/journal.pbio.2006223

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Glasgow SD, McPhedrain R, Madranges JF, Kennedy TE, Ruthazer ES (2019) Approaches and limitations in the investigation of synaptic transmission and plasticity. Front Synaptic Neurosci 11:20. https://doi.org/10.3389/fnsyn.2019.00020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Montarolo PG, Goelet P, Castellucci VF, Morgan J, Kandel ER, Schacher S. A critical period for macromolecular synthesis in long-term heterosynaptic facilitation in Aplysia. Science 1986;234(4781):1249–54. Epub 1986/12/05. doi: https://doi.org/10.1126/science.3775383

  8. Lin M-Y, Sheng Z-H (2015) Regulation of mitochondrial transport in neurons. Exp Cell Res 334(1):35–44. Epub 2015/01/19. https://doi.org/10.1016/j.yexcr.2015.01.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Ferguson SM (2018) Axonal transport and maturation of lysosomes. Curr Opin Neurobiol 51:45–51. Epub 2018/03/09. https://doi.org/10.1016/j.conb.2018.02.020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Devine MJ, Kittler JT (2018) Mitochondria at the neuronal presynapse in health and disease. Nat Rev Neurosci 19(2):63–80. https://doi.org/10.1038/nrn.2017.170

    Article  CAS  PubMed  Google Scholar 

  11. Liu X-A, Rizzo V, Puthanveettil SV (2012) Pathologies of axonal transport in neurodegenerative diseases. Transl Neurosci 3(4):355–372. https://doi.org/10.2478/s13380-012-0044-7

    Article  PubMed  Google Scholar 

  12. Chevalier-Larsen E, Holzbaur ELF. Axonal transport and neurodegenerative disease. Biochim Biophys Acta 2006;1762(11):1094–108. doi: https://doi.org/10.1016/j.bbadis.2006.04.002

  13. Errea O, Moreno B, Gonzalez-Franquesa A, Garcia-Roves PM, Villoslada P (2015) The disruption of mitochondrial axonal transport is an early event in neuroinflammation. J Neuroinflammation 12(1):152. https://doi.org/10.1186/s12974-015-0375-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Baloh RH, Schmidt RE, Pestronk A, Milbrandt J (2007) Altered axonal mitochondrial transport in the pathogenesis of Charcot-Marie-tooth disease from mitofusin 2 mutations. J Neurosci 27(2):422–430. https://doi.org/10.1523/jneurosci.4798-06.2007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Lie PPY, Nixon RA (2019) Lysosome trafficking and signaling in health and neurodegenerative diseases. Neurobiol Dis 122:94–105. Epub 2018/05/30. https://doi.org/10.1016/j.nbd.2018.05.015

    Article  CAS  PubMed  Google Scholar 

  16. Guo W, Stoklund Dittlau K, Van Den Bosch L (2020) Axonal transport defects and neurodegeneration: Molecular mechanisms and therapeutic implications. Semin Cell Dev Biol 99:133–150. https://doi.org/10.1016/j.semcdb.2019.07.010

    Article  CAS  PubMed  Google Scholar 

  17. Li X, Jiang L-H (2018) Multiple molecular mechanisms form a positive feedback loop driving amyloid β42 peptide-induced neurotoxicity via activation of the TRPM2 channel in hippocampal neurons. Cell Death Dis 9(2):195. https://doi.org/10.1038/s41419-018-0270-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Fricker M, Tolkovsky AM, Borutaite V, Coleman M, Brown GC (2018) Neuronal cell death. Physiol Rev 98(2):813–880. https://doi.org/10.1152/physrev.00011.2017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Miller KE, Sheetz MP (2004) Axonal mitochondrial transport and potential are correlated. J Cell Sci 117(13):2791. https://doi.org/10.1242/jcs.01130

    Article  CAS  PubMed  Google Scholar 

  20. Badal KK, Akhmedov K, Lamoureux P, Liu X-A, Reich A, Fallahi-Sichani M, Swarnkar S, Miller KE, Puthanveettil SV. Synapse formation activates a transcriptional program for persistent enhancement in the bi-directional transport of mitochondria. Cell Rep. 2019;26(3):507–17.e3. doi: https://doi.org/10.1016/j.celrep.2018.12.073

  21. Zhao Y, Wang DO, Martin KC (2009) Preparation of Aplysia sensory-motor neuronal cell cultures. J Vis Exp 28:1355. https://doi.org/10.3791/1355

    Article  Google Scholar 

  22. Frazier WT, Kandel ER, Kupfermann I, Waziri R, Coggeshall RE. Morphological and functional properties of identified neurons in the abdominal ganglion of aplysia californica. J Neurophysiol 1967;30(6):1288–351. doi: https://doi.org/10.1152/jn.1967.30.6.1288

  23. Zhao Y, Wang DO, Martin KC (2009) Preparation of aplysia sensory-motor neuronal cell cultures. J Vis Exp (28):e1355. https://doi.org/10.3791/1355

Download references

Acknowledgments

We gratefully acknowledge funding support from NIH (5R01MH094607-05, 5R21MH108929-02), and NSF (Award number 1453799) to carry out this work.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Kyle E. Miller or Sathyanarayanan V. Puthanveettil .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Badal, K., Zhao, Y., Miller, K.E., Puthanveettil, S.V. (2022). Live Imaging and Quantitative Analysis of Organelle Transport in Sensory Neurons of Aplysia Californica. In: Vagnoni, A. (eds) Axonal Transport. Methods in Molecular Biology, vol 2431. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1990-2_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1990-2_2

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1989-6

  • Online ISBN: 978-1-0716-1990-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics