Skip to main content

In Vitro Generation of Heart Field Specific Cardiomyocytes

  • Protocol
  • First Online:
Stem Cell Assays

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2429))

Abstract

Myocardial infarction (MI) can lead to irreversible loss of cardiomyocytes (CMs), primarily localized to the left ventricle (LV) of the heart. The CMs of the LV are predominantly derived from first heart field (FHF) progenitors, whereas the majority of CMs within the right ventricle originate from the second heart field (SHF) during early cardiogenesis. Human embryonic stem cells (hESCs) serve as a valuable source of CMs for understanding early cardiac development and lineage commitment of CMs within these two heart fields that ultimately enable theĀ development of more effective candidates for cell therapy. An ideal candidate may be FHF CMs that share the same ontogeny with the LV CMs that die after MI. We previously generated a double reporter hESC line that utilizes two important cardiac transcription factors, TBX5 and NKX2-5. TBX5 marks FHF progenitors and CMs, while NKX2-5 is expressed in nearly all myocytes of the developing heart. Here, we describe a step-by-step approach to efficiently generate FHF and SHF CMs using this double reporter hESC line. In addition, this approach can be applied to any non-genetically modified hESC lines to enrich FHF and SHF CMs. Obtaining enriched populations of these two CM subtypes provides a platform for downstream comparative analyses and in vitro studies to facilitate a deeper understanding of cardiovascular lineage commitment and theĀ development of more effective candidates for cell therapy to treat diseases or defects that affect specific regions of the heart.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ilic D, Ogilvie C (2017) Concise review: human embryonic stem cells-what have we done? What are we doing? Where are we going? Stem Cells 35(1):17ā€“25. https://doi.org/10.1002/stem.2450

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  2. Romagnuolo R, Masoudpour H, Porta-SĆ”nchez A et al (2019) Human embryonic stem cell-derived cardiomyocytes regenerate the infarcted pig heart but induce ventricular tachyarrhythmias. Stem Cell Reports 12(5):967ā€“981. https://doi.org/10.1016/j.stemcr.2019.04.005

    ArticleĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  3. Kim D, Kim SB, Ryu JL et al (2020) Human embryonic stem cell-derived Wilson's disease model for screening drug efficacy. Cells 9(4):872. https://doi.org/10.3390/cells9040872

    ArticleĀ  CASĀ  PubMed CentralĀ  Google ScholarĀ 

  4. Crespo M, Vilar E, Tsai SY et al (2017) Colonic organoids derived from human induced pluripotent stem cells for modeling colorectal cancer and drug testing. Nat Med 23(7):878ā€“884. https://doi.org/10.1038/nm.4355

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  5. DeLaughter DM, Bick AG, Wakimoto H et al (2016) Single-cell resolution of temporal gene expression during heart development. Dev Cell 39(4):480ā€“490. https://doi.org/10.1016/j.devcel.2016.10.001

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  6. Kattman SJ, Witty AD, Gagliardi M et al (2011) Stage-specific optimization of activin/nodal and BMP signaling promotes cardiac differentiation of mouse and human pluripotent stem cell lines. Cell Stem Cell 8(2):228ā€“240. https://doi.org/10.1016/j.stem.2010.12.008

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  7. Lian X, Zhang J, Azarin SM et al (2013) Directed cardiomyocyte differentiation from human pluripotent stem cells by modulating Wnt/Ī²-catenin signaling under fully defined conditions. Nat Protoc 8(1):162ā€“175. https://doi.org/10.1038/nprot.2012.150

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  8. Yang L, Soonpaa MH, Adler ED et al (2008) Human cardiovascular progenitor cells develop from a KDR+ embryonic-stem-cell-derived population. Nature 453(7194):524ā€“528. https://doi.org/10.1038/nature06894

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  9. Liu X, Yagi H, Saeed S et al (2017) The complex genetics of hypoplastic left heart syndrome. Nat Genet 49(7):1152ā€“1159. https://doi.org/10.1038/ng.3870

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  10. Corrado D, Link MS, Calkins H (2017) Arrhythmogenic right ventricular cardiomyopathy. N Engl J Med 376(15):1489ā€“1490. https://doi.org/10.1056/NEJMc1701400

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  11. Pezhouman A, Engel JL, Nguyen NB et al (2021) Isolation and characterization of hESC-derived heart field-specific cardiomyocytes unravels new insights into their transcriptional and electrophysiological profiles. Cardiovasc Res. https://doi.org/10.1093/cvr/cvab102

  12. CHIR 99021. https://www.tocris.com/products/chir-99021_4423?gclid=CjwKCAjwm_P5BRAhEiwAwRzSO587e4PfNDdgpk4MfnlHGmMHzxLzmr1D8tGbiSPKg-9ATGBFLqVn9BoCvUYQAvD_BwE#ds_technical_data

  13. IWP2. https://www.tocris.com/products/iwp-2_3533

  14. Y-27632 dihydrochloride. https://www.tocris.com/products/y-27632-dihydrochloride_1254?gclid=CjwKCAjwm_P5BRAhEiwAwRzSO4qVIcMe6q8JJZPJ981Ad_mG07y4RMghUf5GSx5AaXzSRBqKHGHODhoCcmoQAvD_BwE

Download references

Acknowledgments

This work was supported in part by grants from the Eli & Edythe Broad Center of Regenerative Medicine and Stem Cell Research at UCLA Postdoctoral Fellowship (A.P.), Department of Defense Discovery Award (W81XWH-19-1-0244) (A.P.), Ruth L. Kirschstein Predoctoral Fellowship (HL144057) (N.B.N), California Institute for Regenerative Medicine (CIRM) (RN3-06378) (R.A.) and Eli & Edythe Broad Center of Regenerative Medicine and Stem Cell Research at UCLA Research Award (R.A.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Reza Ardehali .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

Ā© 2022 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Pezhouman, A., Nguyen, N.B., Shevtsov, A., Qiao, R., Ardehali, R. (2022). In Vitro Generation of Heart Field Specific Cardiomyocytes. In: Kannan, N., Beer, P. (eds) Stem Cell Assays. Methods in Molecular Biology, vol 2429. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1979-7_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1979-7_17

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1978-0

  • Online ISBN: 978-1-0716-1979-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics