Skip to main content

Intravascular Fluorescence Molecular Imaging of Atherosclerosis

  • Protocol
  • First Online:
Atherosclerosis

Abstract

Optical molecular imaging using near-infrared fluorescence (NIRF) light is an emerging high-resolution imaging approach to image a wide range of molecular and cellular species in vivo. Imaging using NIR wavelengths (650–900 nm) enables deeper photon penetration into tissue and reduced tissue autofluorescence, resulting in higher sensitivity to detect exogenously administered NIR fluorophores (injectable molecular imaging agents). Greater imaging depth of several centimeters is further achievable in the NIR window as blood absorption is as an order of magnitude lower than in the visible range. Furthermore, as optical imaging is routinely performed in the cardiac catheterization laboratory (e.g., optical coherence tomography), intravascular NIRF offers a promising translational approach for clinical coronary and peripheral arterial imaging. To this point, the first human intravascular NIRF imaging study recently demonstrated the ability to detect NIR autofluorescence in patients with coronary atherosclerosis. This study provides a foundation for targeted intravascular NIRF molecular imaging studies in coronary patients. In this chapter, we detail system engineering, imaging agents and translational applications of intravascular NIRF molecular imaging.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bourantas CV, Jaffer FA, Gijsen FJ, van Soest G, Madden SP, Courtney BK, Fard AM, Tenekecioglu E, Zeng Y, van der Steen AFW, Emelianov S, Muller J, Stone PH, Marcu L, Tearney GJ, Serruys PW (2017) Hybrid intravascular imaging: recent advances, technical considerations, and current applications in the study of plaque pathophysiology. Eur Heart J 38:400–412. https://doi.org/10.1093/eurheartj/ehw097

    Article  PubMed  Google Scholar 

  2. Chowdhury MM, Tawakol A, Jaffer FA (2017) Molecular imaging of atherosclerosis: a clinical focus. Curr Cardiovasc Imaging Rep 10:2. https://doi.org/10.1007/s12410-017-9397-1

    Article  PubMed  PubMed Central  Google Scholar 

  3. Khraishah H, Jaffer FA (2020) Intravascular molecular imaging: near-infrared fluorescence as a new frontier. Front Cardiovasc Med 7:587100. https://doi.org/10.3389/fcvm.2020.587100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Jablonski A (1933) Efficiency of anti-stokes fluorescence in dyes. Nature 131:839–840. https://doi.org/10.1038/131839b0

    Article  CAS  Google Scholar 

  5. Lakowicz JR (2006) Principles of fluorescence spectroscopy. Springer US, Boston, MA

    Book  Google Scholar 

  6. Middendorf L, Amen J, Bruce R, Draney D, DeGraff D, Gewecke J, Grone D, Humphrey P, Little G, Lugade A, Narayanan N, Oommen A, Osterman H, Peterson R, Rada J, Raghavachari R, Roemer S (1998) Near-infrared fluorescence instrumentation for DNA analysis. In: Near-infrared dyes for high technology applications. Springer Netherlands, Dordrecht, pp 21–53

    Chapter  Google Scholar 

  7. Piruska A, Nikcevic I, Lee SH, Ahn C, Heineman WR, Limbach PA, Seliskar CJ (2005) The autofluorescence of plastic materials and chips measured under laser irradiation. Lab Chip 5:1348–1354. https://doi.org/10.1039/b508288a

    Article  CAS  PubMed  Google Scholar 

  8. Robles FE, Chowdhury S, Wax A (2010) Assessing hemoglobin concentration using spectroscopic optical coherence tomography for feasibility of tissue diagnostics. Biomed Opt Express 1:310–317. https://doi.org/10.1364/boe.1.000310/

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Frangioni JV (2003) In vivo near-infrared fluorescence imaging. Curr Opin Chem Biol 7:626–634

    Article  CAS  PubMed  Google Scholar 

  10. Jaffer FA, Vinegoni C, John MC, Aikawa E, Gold HK, Finn AV, Ntziachristos V, Libby P, Weissleder R (2008) Real-time catheter molecular sensing of inflammation in proteolytically active atherosclerosis. Circulation 118:1802–1809. https://doi.org/10.1161/CIRCULATIONAHA.108.785881

    Article  PubMed  PubMed Central  Google Scholar 

  11. Jaffer FA, Calfon MA, Rosenthal A, Mallas G, Razansky RN, Mauskapf A, Weissleder R, Libby P, Ntziachristos V (2011) Two-dimensional intravascular near-infrared fluorescence molecular imaging of inflammation in atherosclerosis and stent-induced vascular injury. J Am Coll Cardiol 57:2516–2526. https://doi.org/10.1016/j.jacc.2011.02.036

    Article  PubMed  PubMed Central  Google Scholar 

  12. Khamis RY, Woollard KJ, Hyde GD, Boyle JJ, Bicknell C, Chang S-H, Malik TH, Hara T, Mauskapf A, Granger DW, Johnson JL, Ntziachristos V, Matthews PM, Jaffer FA, Haskard DO (2016) Near infrared fluorescence (NIRF) molecular imaging of oxidized LDL with an autoantibody in experimental atherosclerosis. Sci Rep 6:21785. https://doi.org/10.1038/srep21785

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Vinegoni C, Botnaru I, Aikawa E, Calfon MA, Iwamoto Y, Folco EJ, Ntziachristos V, Weissleder R, Libby P, Jaffer FA (2011) Indocyanine green enables near-infrared fluorescence imaging of lipid-rich, inflamed atherosclerotic plaques. Sci Transl Med 3:84ra45. https://doi.org/10.1126/scitranslmed.3001577

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Verjans JW, Osborn EA, Ughi GJ, Calfon Press MA, Hamidi E, Antoniadis AP, Papafaklis MI, Conrad MF, Libby P, Stone PH, Cambria RP, Tearney GJ, Jaffer FA (2016) Targeted near-infrared fluorescence imaging of atherosclerosis: clinical and intracoronary evaluation of Indocyanine green. JACC Cardiovasc Imaging 9:1087–1095. https://doi.org/10.1016/j.jcmg.2016.01.034

    Article  PubMed  PubMed Central  Google Scholar 

  15. Yoo H, Kim JW, Shishkov M, Namati E, Morse T, Shubochkin R, McCarthy JR, Ntziachristos V, Bouma BE, Jaffer FA, Tearney GJ (2011) Intra-arterial catheter for simultaneous microstructural and molecular imaging in vivo. Nat Med 17:1680–1684. https://doi.org/10.1038/nm.2555

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Hara T, Ughi GJ, McCarthy JR, Erdem SS, Mauskapf A, Lyon SC, Fard AM, Edelman ER, Tearney GJ, Jaffer FA (2017) Intravascular fibrin molecular imaging improves the detection of unhealed stents assessed by optical coherence tomography in vivo. Eur Heart J 38:447–455. https://doi.org/10.1093/eurheartj/ehv677

    Article  CAS  PubMed  Google Scholar 

  17. Ughi GJ, Verjans J, Fard AM, Wang H, Osborn E, Hara T, Mauskapf A, Jaffer FA, Tearney GJ (2015) Dual modality intravascular optical coherence tomography (OCT) and near-infrared fluorescence (NIRF) imaging: a fully automated algorithm for the distance-calibration of NIRF signal intensity for quantitative molecular imaging. Int J Cardiovasc Imaging 31:259–268. https://doi.org/10.1007/s10554-014-0556-z

    Article  PubMed  Google Scholar 

  18. Yun SH, Boudoux C, Tearney GJ, Bouma BE (2003) High-speed wavelength-swept semiconductor laser with a polygon-scanner-based wavelength filter. Opt Lett 28:1981–1983

    Article  CAS  PubMed  Google Scholar 

  19. Piao Z, Singh K, Chowdhury M, Gardecki J, Nishimiya K, Yin B, Beatty M, Bablouzian A, Giddings S, Mauskapf A, Jaffer FA, Tearney G (2018) TCT-56 high-resolution intravascular OCT-NIRF molecular imaging for in vivo assessment of inflammation in atherosclerosis and vascular injury. J Am Coll Cardiol 72:B25. https://doi.org/10.1016/j.jacc.2018.08.1143

    Article  Google Scholar 

  20. Schindelin J, Arganda-Carreras I, Frise E, Kaynig V, Longair M, Pietzsch T, Preibisch S, Rueden C, Saalfeld S, Schmid B, Tinevez J-Y, White DJ, Hartenstein V, Eliceiri K, Tomancak P, Cardona A (2012) Fiji: an open-source platform for biological-image analysis. Nat Methods 9:676–682. https://doi.org/10.1038/nmeth.2019

    Article  CAS  PubMed  Google Scholar 

  21. Mintz GS, Nissen SE, Anderson WD, Bailey SR, Erbel R, Fitzgerald PJ, Pinto FJ, Rosenfield K, Siegel RJ, Tuzcu EM, Yock PG (2001) American College of Cardiology Clinical Expert Consensus Document on standards for acquisition, measurement and reporting of intravascular ultrasound studies (IVUS). A report of the American College of Cardiology Task Force on Clinical Expert Consensus Documents. J Am Coll Cardiol 37:1478–1492

    Article  CAS  PubMed  Google Scholar 

  22. Chowdhury MM, Singh K, Albaghdadi MS, Khraishah H, Mauskapf A, Kessinger CW, Osborn EA, Kellnberger S, Piao Z, Lino Cardenas CL, Grau MS, Jaff MR, Rosenfield K, Libby P, Edelman ER, Lindsay ME, Tearney GJ, Jaffer FA (2020) Paclitaxel drug-coated balloon angioplasty suppresses progression and inflammation of experimental atherosclerosis in rabbits. JACC Basic Transl Sci 5:685–695. https://doi.org/10.1016/j.jacbts.2020.04.007

    Article  PubMed  PubMed Central  Google Scholar 

  23. Schwartz RS, Chronos NA, Virmani R (2004) Preclinical restenosis models and drug-eluting stents: still important, still much to learn. J Am Coll Cardiol 44:1373–1385. https://doi.org/10.1016/j.jacc.2004.04.060

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by NIH R01 HL150538 and R01 HL137913 grants to F.A.J.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Farouc A. Jaffer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Chowdhury, M.M. et al. (2022). Intravascular Fluorescence Molecular Imaging of Atherosclerosis. In: Ramji, D. (eds) Atherosclerosis. Methods in Molecular Biology, vol 2419. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1924-7_52

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1924-7_52

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1923-0

  • Online ISBN: 978-1-0716-1924-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics