Skip to main content

Identifying Protein Interactomes of Target RNAs Using HyPR-MS

  • Protocol
  • First Online:
Post-Transcriptional Gene Regulation

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2404))

Abstract

RNA–protein interactions are integral to maintaining proper cellular function and homeostasis, and the disruption of key RNA–protein interactions is central to many disease states. HyPR-MS (hybridization purification of RNA–protein complexes followed by mass spectrometry) is a highly versatile and efficient technology which enables multiplexed discovery of specific RNA–protein interactomes. This chapter provides extensive guidance for successful application of HyPR-MS to the system and target RNA(s) of interest, as well as a detailed description of the fundamental HyPR-MS procedure, including: (1) experimental design of controls, capture oligonucleotides, and qPCR assays; (2) formaldehyde cross-linking of cell culture; (3) cell lysis and RNA solubilization; (4) isolation of target RNA(s); (5) RNA purification and RT-qPCR analysis; (6) protein preparation and mass spectrometric analysis; and (7) mass spectrometric data analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Change history

  • 02 February 2022

    A correction has been published.

References

  1. Moore MJ (2005) From birth to death: the complex lives of eukaryotic mRNAs. Science 309:1514–1518

    Article  CAS  Google Scholar 

  2. Glisovic T, Bachorik JL, Yong J et al (2008) RNA-binding proteins and post-transcriptional gene regulation. FEBS Lett 582:1977–1986

    Article  CAS  Google Scholar 

  3. Mitchell SF, Parker R (2014) Principles and properties of eukaryotic mRNPs. Mol Cell 54:547–558

    Article  CAS  Google Scholar 

  4. Re A, Joshi T, Kulberkyte E et al (2014) RNA-protein interactions: an overview. In: Gorodkin J, Ruzzo WL (eds) RNA sequence, structure, and function: computational and bioinformatic methods, Methods in molecular biology, vol 1097. Humana Press, Totowa, NJ, pp 491–521

    Google Scholar 

  5. Matera AG, Terns RM, Terns MP (2007) Non-coding RNAs: lessons from the small nuclear and small nucleolar RNAs. Nat Rev Mol Cell Biol 8:209–220

    Article  CAS  Google Scholar 

  6. Mayr C (2017) Regulation by 3′-untranslated regions. Annu Rev Genet 51:171–194

    Article  CAS  Google Scholar 

  7. Marchese FP, Raimondi I, Huarte M (2017) The multidimensional mechanisms of long noncoding RNA function. Genome Biol 18:206

    Article  Google Scholar 

  8. Allerson CR, Cazzola M, Rouault TA (1999) Clinical severity and thermodynamic effects of iron-responsive element mutations in hereditary hyperferritinemia-cataract syndrome. J Biol Chem 274:26439–26447

    Article  CAS  Google Scholar 

  9. Lukong KE, Chang KW, Khandjian EW et al (2008) RNA-binding proteins in human genetic disease. Trends Genet 24:416–425

    Article  CAS  Google Scholar 

  10. Corbett AH (2018) Post-transcriptional regulation of gene expression and human disease. Curr Opin Cell Biol 52:96–104

    Article  CAS  Google Scholar 

  11. Ramanathan M, Porter DF, Khavari PA (2019) Methods to study RNA–protein interactions. Nat Methods 16:225–234

    Article  CAS  Google Scholar 

  12. Ule J, Jensen KB, Ruggiu M et al (2003) CLIP identifies Nova-regulated RNA networks in the brain. Science 302:1212–1215

    Article  CAS  Google Scholar 

  13. Licatalosi DD, Mele A, Fak JJ et al (2008) HITS-CLIP yields genome-wide insights into brain alternative RNA processing. Nature 456:464–469

    Article  CAS  Google Scholar 

  14. Hafner M, Landthaler M, Burger L et al (2010) Transcriptome-wide identification of RNA-binding protein and microRNA target sites by PAR-CLIP. Cell 141:129–141

    Article  CAS  Google Scholar 

  15. König J, Zarnack K, Rot G et al (2010) iCLIP reveals the function of hnRNP particles in splicing at individual nucleotide resolution. Nat Struct Mol Biol 17:909–915

    Article  Google Scholar 

  16. Van Nostrand EL, Pratt GA, Shishkin AA et al (2016) Robust transcriptome-wide discovery of RNA-binding protein binding sites with enhanced CLIP (eCLIP). Nat Methods 13:508–514

    Article  Google Scholar 

  17. Kim B, Kim VN (2019) fCLIP-seq for transcriptomic footprinting of dsRNA-binding proteins: lessons from DROSHA. Methods 152:3–11

    Article  CAS  Google Scholar 

  18. West JA, Davis CP, Sunwoo H et al (2014) The long noncoding RNAs NEAT1 and MALAT1 bind active chromatin sites. Mol Cell 55:791–802

    Article  CAS  Google Scholar 

  19. Chu C, Zhang QC, da Rocha ST et al (2015) Systematic discovery of Xist RNA binding proteins. Cell 161:404–416

    Article  CAS  Google Scholar 

  20. McHugh CA, Chen CK, Chow A et al (2015) The Xist lncRNA interacts directly with SHARP to silence transcription through HDAC3. Nature 521:232–236

    Article  CAS  Google Scholar 

  21. Knoener RA, Becker JT, Scalf M et al (2017) Elucidating the in vivo interactome of HIV-1 RNA by hybridization capture and mass spectrometry. Sci Rep 7:16965

    Article  Google Scholar 

  22. Spiniello M, Knoener RA, Steinbrink MI et al (2018) HyPR-MS for multiplexed discovery of MALAT1, NEAT1, and NORAD lncRNA protein interactomes. J Proteome Res 17:3022–3038

    Article  CAS  Google Scholar 

  23. Spiniello M, Steinbrink MI, Cesnik AJ et al (2019) Comprehensive in vivo identification of the c-Myc mRNA interactome using HyPR-MS. RNA 25:1337–1352

    Article  CAS  Google Scholar 

  24. Knoener R, Evans E III, Becker JT et al (2021) Identification of host proteins differentially associated with HIV-1 RNA splice variants. eLife 10:e62470

    Google Scholar 

  25. Erde J, Loo RRO, Loo JA (2014) Enhanced FASP (eFASP) to increase proteome coverage and sample recovery for quantitative proteomic experiments. J Proteome Res 13:1885–1895

    Article  CAS  Google Scholar 

  26. Tyanova S, Temu T, Sinitcyn P et al (2016) The Perseus computational platform for comprehensive analysis of (prote)omics data. Nat Methods 13:731–740

    Article  CAS  Google Scholar 

  27. Altschul SF, Gish W, Miller W et al (1990) Basic local alignment search tool. J Mol Biol 215:403–410

    Article  CAS  Google Scholar 

  28. Schroeder A, Mueller O, Stocker S et al (2006) The RIN: an RNA integrity number for assigning integrity values to RNA measurements. BMC Mol Biol 7:3

    Article  Google Scholar 

  29. Zuker M (2003) Mfold web server for nucleic acid folding and hybridization prediction. Nucleic Acids Res 31:3406–3415

    Article  CAS  Google Scholar 

  30. Kibbe WA (2007) OligoCalc: an online oligonucleotide properties calculator. Nucleic Acids Res 35:W43–W46

    Article  Google Scholar 

  31. Shipley GL (2013) Assay design for real-time qPCR. In: Nolan T, Bustin SA (eds) PCR technology: current innovations, 3rd edn. CRC Press, Taylor & Francis Group, Boca Raton, FL, pp 177–197

    Google Scholar 

  32. Jackson V (1978) Studies on histone organization in the nucleosome using formaldehyde as a reversible cross-linking agent. Cell 15:945–954

    Article  CAS  Google Scholar 

  33. Kennedy-Darling J, Smith LM (2014) Measuring the formaldehyde protein-DNA cross-link reversal rate. Anal Chem 86:5678–5681

    Article  CAS  Google Scholar 

  34. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCt method. Methods 25:402–408

    Article  CAS  Google Scholar 

  35. The UniProt Consortium (2019) UniProt: a worldwide hub of protein knowledge. Nucleic Acids Res 47:D506–D515

    Article  Google Scholar 

  36. Frankish A, Diekhans M, Ferreira AM et al (2019) GENCODE reference annotation for the human and mouse genomes. Nucleic Acids Res 47:D766–D773

    Article  CAS  Google Scholar 

  37. O’Leary NA, Wright MW, Brister JR et al (2016) Reference sequence (RefSeq) database at NCBI: current status, taxonomic expansion, and functional annotation. Nucleic Acids Res 44:D733–D745

    Article  Google Scholar 

  38. Solntsev SK, Shortreed MR, Frey BL et al (2018) Enhanced global post-translational modification discovery with MetaMorpheus. J Proteome Res 17:1844–1851

    Article  CAS  Google Scholar 

  39. Kong AT, Leprevost FV, Avtonomov DM et al (2017) MSFragger: ultrafast and comprehensive peptide identification in mass spectrometry-based proteomics. Nat Methods 14:513–520

    Article  CAS  Google Scholar 

  40. Cox J, Neuhauser N, Michalski A et al (2011) Andromeda: a peptide search engine integrated into the MaxQuant environment. J Proteome Res 10:1794–1805

    Article  CAS  Google Scholar 

  41. Millikin RJ, Solntsev SK, Shortreed MR et al (2018) Ultrafast peptide label-free quantification with FlashLFQ. J Proteome Res 17:386–391

    Article  CAS  Google Scholar 

  42. Tyanova S, Temu T, Cox J (2016) The MaxQuant computational platform for mass spectrometry-based shotgun proteomics. Nat Protoc 11:2301–2319

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by NIH-NCI grant R01CA193481. K.B.H. was supported in part by the National Human Genome Research Institute grant to the Genomic Science Training Program, 5T32HG002760. R.M.M. was supported in part by the NIH Chemistry-Biology Interface Training Grant, T32GM008505. The authors would like to thank members of the Smith lab for helpful discussions and guidance in the development of HyPR-MS. The figures in this chapter were created with BioRender.com.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lloyd M. Smith .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Henke, K.B., Miller, R.M., Knoener, R.A., Scalf, M., Spiniello, M., Smith, L.M. (2022). Identifying Protein Interactomes of Target RNAs Using HyPR-MS. In: Dassi, E. (eds) Post-Transcriptional Gene Regulation. Methods in Molecular Biology, vol 2404. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1851-6_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1851-6_12

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1850-9

  • Online ISBN: 978-1-0716-1851-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics