Skip to main content

Initiating Coarse-Grained MD Simulations for Membrane-Bound Proteins

  • Protocol
  • First Online:
Book cover Membrane Lipids

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2402))

Abstract

Molecular dynamics (MD) simulations have become a widely used tool in the scientific community for understanding molecular scale phenomena that are challenging to address with wet-lab techniques. Coarse-grained simulations, in which multiple atoms are combined into single beads, allow for larger systems and longer time scales to be explored than atomistic techniques. Here, we describe the procedures and equipment required to set up coarse-grained simulations of membrane-bound proteins in a lipid bilayer that can mimic many membrane environments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Buyan A, Cox CD, Barnoud J, Li J, Chan HSM, Martinac B, Marrink SJ, Corry B (2020) Piezo1 forms specific, functionally important interactions with phosphoinositides and cholesterol. Biophys J 119:1683–1697. https://doi.org/10.1016/j.bpj.2020.07.043

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Yen HY, Hoi KK, Liko I, Hedger G, Horrell MR, Song W, Wu D, Heine P, Warne T, Lee Y, Carpenter B, Pluckthun A, Tate CG, Sansom MSP, Robinson CV (2018) PtdIns(4,5)P2 stabilizes active states of GPCRs and enhances selectivity of G-protein coupling. Nature 559(7714):423–427. https://doi.org/10.1038/s41586-018-0325-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Hedger G, Sansom MS, Koldso H (2015) The juxtamembrane regions of human receptor tyrosine kinases exhibit conserved interaction sites with anionic lipids. Sci Rep 5:9198. https://doi.org/10.1038/srep09198

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Stansfeld PJ, Hopkinson R, Ashcroft FM, Sansom MS (2009) PIP(2)-binding site in Kir channels: definition by multiscale biomolecular simulations. Biochemistry 48(46):10926–10933. https://doi.org/10.1021/bi9013193

    Article  CAS  PubMed  Google Scholar 

  5. Corradi V, Sejdiu BI, Mesa-Galloso H, Abdizadeh H, Noskov SY, Marrink SJ, Tieleman DP (2019) Emerging diversity in lipid-protein interactions. Chem Rev 119(9):5775–5848. https://doi.org/10.1021/acs.chemrev.8b00451

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Corradi V, Mendez-Villuendas E, Ingolfsson HI, Gu RX, Siuda I, Melo MN, Moussatova A, DeGagne LJ, Sejdiu BI, Singh G, Wassenaar TA, Delgado Magnero K, Marrink SJ, Tieleman DP (2018) Lipid-protein interactions are unique fingerprints for membrane proteins. ACS Cent Sci 4(6):709–717. https://doi.org/10.1021/acscentsci.8b00143

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Buyan A, Sun D, Corry B (2018) Protonation state of inhibitors determines interaction sites within voltage-gated sodium channels. Proc Natl Acad Sci U S A 115(14):E3135–E3144. https://doi.org/10.1073/pnas.1714131115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Deplazes E, Louhivuori M, Jayatilaka D, Marrink SJ, Corry B (2012) Structural investigation of MscL gating using experimental data and coarse grained MD simulations. PLoS Comput Biol 8(9):e1002683. https://doi.org/10.1371/journal.pcbi.1002683

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Koldso H, Shorthouse D, Helie J, Sansom MS (2014) Lipid clustering correlates with membrane curvature as revealed by molecular simulations of complex lipid bilayers. PLoS Comput Biol 10(10):e1003911. https://doi.org/10.1371/journal.pcbi.1003911

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Chavent M, Duncan AL, Sansom MS (2016) Molecular dynamics simulations of membrane proteins and their interactions: from nanoscale to mesoscale. Curr Opin Struct Biol 40:8–16. https://doi.org/10.1016/j.sbi.2016.06.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Ingolfsson HI, Melo MN, van Eerden FJ, Arnarez C, Lopez CA, Wassenaar TA, Periole X, de Vries AH, Tieleman DP, Marrink SJ (2014) Lipid organization of the plasma membrane. J Am Chem Soc 136(41):14554–14559. https://doi.org/10.1021/ja507832e

    Article  CAS  PubMed  Google Scholar 

  12. Marrink SJ, Risselada HJ, Yeflmov S, Tieleman DP, de Vries AH (2007) The MARTINI force field: coarse grained model for biomolecular simulations. J Phys Chem B 111:7812–7824

    Article  CAS  Google Scholar 

  13. Prigozhin MB, Zhang Y, Schulten K, Gruebele M, Pogorelov TV (2019) Fast pressure-jump all-atom simulations and experiments reveal site-specific protein dehydration-folding dynamics. Proc Natl Acad Sci U S A 116(12):5356–5361. https://doi.org/10.1073/pnas.1814927116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Hadden JA, Perilla JR, Schlicksup CJ, Venkatakrishnan B, Zlotnick A, Schulten K (2018) All-atom molecular dynamics of the HBV capsid reveals insights into biological function and cryo-EM resolution limits. Elife 7:e32478. https://doi.org/10.7554/eLife.32478

    Article  PubMed  PubMed Central  Google Scholar 

  15. Yan XE, Ayaz P, Zhu SJ, Zhao P, Liang L, Zhang CH, Wu YC, Li JL, Choi HG, Huang X, Shan Y, Shaw DE, Yun CH (2020) Structural basis of AZD9291 selectivity for EGFR T790M. J Med Chem 63(15):8502–8511. https://doi.org/10.1021/acs.jmedchem.0c00891

    Article  CAS  PubMed  Google Scholar 

  16. Wang Q, Pechersky Y, Sagawa S, Pan AC, Shaw DE (2019) Structural mechanism for Bruton’s tyrosine kinase activation at the cell membrane. Proc Natl Acad Sci U S A 116(19):9390–9399. https://doi.org/10.1073/pnas.1819301116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Pan AC, Jacobson D, Yatsenko K, Sritharan D, Weinreich TM, Shaw DE (2019) Atomic-level characterization of protein-protein association. Proc Natl Acad Sci U S A 116(10):4244–4249. https://doi.org/10.1073/pnas.1815431116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Zanetti-Domingues LC, Korovesis D, Needham SR, Tynan CJ, Sagawa S, Roberts SK, Kuzmanic A, Ortiz-Zapater E, Jain P, Roovers RC, Lajevardipour A, van Bergen En Henegouwen PMP, Santis G, Clayton AHA, Clarke DT, Gervasio FL, Shan Y, Shaw DE, Rolfe DJ, Parker PJ, Martin-Fernandez ML (2018) The architecture of EGFR’s basal complexes reveals autoinhibition mechanisms in dimers and oligomers. Nat Commun 9(1):4325. https://doi.org/10.1038/s41467-018-06632-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Lindorff-Larsen K, Maragakis P, Piana S, Shaw DE (2016) Picosecond to millisecond structural dynamics in human ubiquitin. J Phys Chem B 120(33):8313–8320. https://doi.org/10.1021/acs.jpcb.6b02024

    Article  CAS  PubMed  Google Scholar 

  20. Hall BA, Halim KB, Buyan A, Emmanouil B, Sansom MS (2014) Sidekick for membrane simulations: automated ensemble molecular dynamics simulations of transmembrane helices. J Chem Theor Comput 10(5):2165–2175. https://doi.org/10.1021/ct500003g

    Article  CAS  Google Scholar 

  21. Stansfeld PJ, Sansom MS (2011) Molecular simulation approaches to membrane proteins. Structure 19(11):1562–1572. https://doi.org/10.1016/j.str.2011.10.002

    Article  CAS  PubMed  Google Scholar 

  22. Stevens MJ (2004) Coarse-grained simulations of lipid bilayers. J Chem Phys 121(23):11942–11948. https://doi.org/10.1063/1.1814058

    Article  CAS  PubMed  Google Scholar 

  23. de Pablo JJ (2011) Coarse-grained simulations of macromolecules: from DNA to nanocomposites. Annu Rev Phys Chem 62:555–574. https://doi.org/10.1146/annurev-physchem-032210-103458

    Article  CAS  PubMed  Google Scholar 

  24. Souza PCT, Thallmair S, Conflitti P, Ramirez-Palacios C, Alessandri R, Raniolo S, Limongelli V, Marrink SJ (2020) Protein-ligand binding with the coarse-grained Martini model. Nat Commun 11(1):3714. https://doi.org/10.1038/s41467-020-17437-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Humphrey W, Dalke A, Schulten K (1996) VMD: visual molecular dynamics. J Mol Graph 14:33–38

    Article  CAS  Google Scholar 

  26. Delano WL (2002) PyMOL. DeLano Scientific, San Carlos, CA, p 700

    Google Scholar 

  27. Fiser A, Sali A (2003) MODELLER: generation and refinement of homology-based protein structure models. Methods Enzymol 374:461–491

    Article  CAS  Google Scholar 

  28. Abraham MJ, Murtola T, Schulz R, Páll S, Smith JC, Hess B, Lindahl E (2015) GROMACS: high performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX 1-2:19–25. https://doi.org/10.1016/j.softx.2015.06.001

    Article  Google Scholar 

  29. Van Rossum G, Drake FL (2009) Python 3 reference manual. CreateSpace, Scotts Valley, CA. https://doi.org/10.5555/1593511

    Book  Google Scholar 

  30. Gowers RJ, Linke M, Barnoud J, Reddy TJE, Melo MN, Seyler SL, Domanski J, Dotson DL, Buchoux S, Kenney IM, Beckstein O (2016) MDAnalysis: a Python package for the rapid analysis of molecular dynamics simulations. In: Benthall S, Rostrup S (eds) Proceedings of the 15th Python in Science Conference. pp 98–105, Austin, TX. SciPy. https://doi.org/10.25080/Majora-629e541a-00e

  31. Michaud-Agrawal N, Denning EJ, Woolf TB, Beckstein O (2011) MDAnalysis: a toolkit for the analysis of molecular dynamics simulations. J Comput Chem 32(10):2319–2327. https://doi.org/10.1002/jcc.21787

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Wassenaar TA, Ingolfsson HI, Bockmann RA, Tieleman DP, Marrink SJ (2015) Computational Lipidomics with insane: a versatile tool for generating custom membranes for molecular simulations. J Chem Theor Comput 11(5):2144–2155. https://doi.org/10.1021/acs.jctc.5b00209

    Article  CAS  Google Scholar 

  33. Wassenaar TA, Pluhackova K, Moussatova A, Sengupta D, Marrink SJ, Tieleman DP, Bockmann RA (2015) High-throughput simulations of dimer and trimer assembly of membrane proteins. The DAFT approach. J Chem Theor Comput 11(5):2278–2291. https://doi.org/10.1021/ct5010092

    Article  CAS  Google Scholar 

  34. Stansfeld PJ, Sansom MS (2011) From coarse grained to atomistic: a serial multiscale approach to membrane protein simulations. J Chem Theor Comput 7(4):1157–1166. https://doi.org/10.1021/ct100569y

    Article  CAS  Google Scholar 

  35. Wassenaar TA, Pluhackova K, Bockmann RA, Marrink SJ, Tieleman DP (2014) Going backward: a flexible geometric approach to reverse transformation from coarse grained to atomistic models. J Chem Theor Comput 10(2):676–690. https://doi.org/10.1021/ct400617g

    Article  CAS  Google Scholar 

  36. Jo S, Kim T, Iyer VG, Im W (2008) CHARMM-GUI: A web-based graphical user interface for CHARMM. J. Comput Chem 29:1859–1865

    Google Scholar 

  37. Otero-Mato JM, Montes-Campos H, Calvelo M, Garcia-Fandino R, Gallego LJ, Pineiro A, Varela LM (2018) GADDLE maps: general algorithm for discrete object deformations based on local exchange maps. J Chem Theor Comput 14(2):466–478. https://doi.org/10.1021/acs.jctc.7b00861

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was funded by the Australian Research Council through grant DP200100860.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amanda Buyan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Buyan, A., Corry, B. (2022). Initiating Coarse-Grained MD Simulations for Membrane-Bound Proteins. In: Cranfield, C.G. (eds) Membrane Lipids. Methods in Molecular Biology, vol 2402. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1843-1_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1843-1_11

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1842-4

  • Online ISBN: 978-1-0716-1843-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics