Skip to main content

Using Genome Scale Mutant Libraries to Identify Essential Genes

  • Protocol
  • First Online:
Essential Genes and Genomes

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2377))

  • 1940 Accesses

Abstract

Identification of essential genes is key to understanding the required processes and gene products of organisms under one or more conditions. Transposon sequencing (Tn-seq) has been used to predict essential genes or ones that conditionally impact fitness in a wide variety of organisms. Here, we describe the generation of genome-scale mutant libraries and the analysis of Tn-seq data to identify essential genes from cultures grown in a single condition as well as those that are conditionally important by analyzing the behavior of these mutant libraries in different growth environments. While we illustrate the approach using data derived from Tn-seq analysis of the α-proteobacteria Rhodobacter sphaeroides and Zymomonas mobilis, the protocols and systems we describe should be generally applicable to a variety of organisms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Loman NJ, Constantinidou C, Chan JZ et al (2012) High-throughput bacterial genome sequencing: an embarrassment of choice, a world of opportunity. Nat Rev Microbiol 10:599–606

    Article  PubMed  CAS  Google Scholar 

  2. Galperin MY, Koonin EV (2010) From complete genome sequence to ‘complete’ understanding? Trends Biotechnol 28:398–406

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  3. Baba T, Ara T, Hasegawa M et al (2006) Construction of Escherichia coli K-12 in-frame, single-gene knockout mutants: the Keio collection. Mol Syst Biol 2:2006.0008

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  4. Yamamoto N, Nakahigashi K, Nakamichi T et al (2009) Update on the Keio collection of Escherichia coli single-gene deletion mutants. Mol Syst Biol 5:335

    Article  PubMed  PubMed Central  Google Scholar 

  5. Koo B-M, Kritikos G, Farelli JD et al (2017) Construction and analysis of two genome-scale deletion libraries for Bacillus subtilis. Cell Syst 4:291–305.e7

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. van Opijnen T, Camilli A (2013) Transposon insertion sequencing: a new tool for systems-level analysis of microorganisms. Nat Rev Microbiol 11:435–442

    Article  PubMed  CAS  Google Scholar 

  7. Pettitt SJ, Krastev DB, Pemberton HN et al (2017) Genome-wide barcoded transposon screen for cancer drug sensitivity in haploid mouse embryonic stem cells. Sci Data 4:170020

    Article  PubMed  PubMed Central  Google Scholar 

  8. Friedrich MJ, Rad L, Bronner IF et al (2017) Genome-wide transposon screening and quantitative insertion site sequencing for cancer gene discovery in mice. Nat Protoc 12:289–309

    Article  PubMed  CAS  Google Scholar 

  9. Yum S-Y, Lee S-J, Kim H-M et al (2016) Efficient generation of transgenic cattle using the DNA transposon and their analysis by next-generation sequencing. Sci Rep 6:27185

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Bai J, Li K, Tang W et al (2019) A high-throughput screen for genes essential for PRRSV infection using a piggyBac-based system. Virology 531:19–30

    Article  PubMed  CAS  Google Scholar 

  11. Ni TK, Landrette SF, Bjornson RD et al (2013) Low-copy piggyBac transposon mutagenesis in mice identifies genes driving melanoma. Proc National Acad Sci U S A 110:E3640–E3649

    Article  Google Scholar 

  12. Friedel RH, Friedel CC, Bonfert T et al (2013) Clonal expansion analysis of transposon insertions by high-throughput sequencing identifies candidate cancer genes in a PiggyBac mutagenesis screen. PLoS One 8:e72338

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Choi J, Landrette SF, Wang T et al (2014) Identification of PLX4032-resistance mechanisms and implications for novel RAF inhibitors. Pigment Cell Melanoma Res 27:253–262

    Article  PubMed  CAS  Google Scholar 

  14. Goodman AL, McNulty NP, Zhao Y et al (2009) Identifying genetic determinants needed to establish a human gut symbiont in its habitat. Cell Host Microbe 6:279–289

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. van Opijnen T, Bodi KL, Camilli A (2009) Tn-seq: high-throughput parallel sequencing for fitness and genetic interaction studies in microorganisms. Nat Methods 6:767–772

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Gawronski J, Wong S, Giannoukos G et al (2009) Tracking insertion mutants within libraries by deep sequencing and a genome-wide screen for Haemophilus genes required in the lung. Proc National Acad Sci U S A 106:16422–16427

    Article  Google Scholar 

  17. Langridge G, Phan DM, Turner D et al (2009) Simultaneous assay of every Salmonella Typhi gene using one million transposon mutants. Genome Res 19:2308–2316

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Burger BT, Imam S, Scarborough MJ et al (2017) Combining genome-scale experimental and computational methods to identify essential genes in Rhodobacter sphaeroides. Msystems 2:e00015–e00017

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Chihiro S, Masanosuke Y (1987) A series of Tn5 variants with various drug-resistance markers and suicide vector for transposon mutagenesis. Gene 56:283–288

    Article  Google Scholar 

  20. Sistrom W (1960) A requirement for sodium in the growth of Rhodopseudomonas spheroides. J Gen Microbiol 22:778–785

    Article  PubMed  CAS  Google Scholar 

  21. Bertani G (1951) Studies on lysogenesis. I. The mode of phage liberation by lysogenic Escherichia coli. J Bacteriol 62:293–300

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Martien JI, Hebert AS, Evenson D et al (2019) Systems-level analysis of oxygen exposure in Zymomonas mobilis: implications for isoprenoid production. Msystems 4:e00284–e00218

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Lal P, Wells FM, Lyu Y et al (2019) A Markerless method for genome engineering in Zymomonas mobilis ZM4. Front Microbiol 10:2216

    Article  PubMed  PubMed Central  Google Scholar 

  24. Larsen R, Wilson M, Guss A et al (2002) Genetic analysis of pigment biosynthesis in Xanthobacter autotrophicus Py2 using a new, highly efficient transposon mutagenesis system that is functional in a wide variety of bacteria. Arch Microbiol 178:193–201

    Article  PubMed  CAS  Google Scholar 

  25. Dabney J, Meyer M (2012) Length and GC-biases during sequencing library amplification: a comparison of various polymerase-buffer systems with ancient and modern DNA sequencing libraries. BioTechniques 52:87–94

    Article  PubMed  CAS  Google Scholar 

  26. Aird D, Ross MG, Chen W-S et al (2011) Analyzing and minimizing PCR amplification bias in Illumina sequencing libraries. Genome Biol 12:R18

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Arkin AP, Cottingham RW, Henry CS et al (2018) KBase: the United States Department of Energy Systems Biology Knowledgebase. Nat Biotechnol 36:566–569

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Langmead B, Trapnell C, Pop M et al (2009) Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol 10:R25

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Langmead B, Salzberg SL (2012) Fast gapped-read alignment with bowtie 2. Nat Methods 9:357–359

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Li H, Durbin R (2009) Fast and accurate short read alignment with burrows–wheeler transform. Bioinformatics 25:1754–1760

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Goecks J, Nekruenko A, Talor J (2010) Galaxy: a comprehensive approach for supporting accessible, reproducible, and transparent computational research in the life sciences. Genome Biol 11:1–38

    Article  Google Scholar 

  32. Hannon GJ (2010) FASTX-Toolkit

    Google Scholar 

  33. Martin M (2011) Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet J 17:10–12

    Article  Google Scholar 

  34. Bolger AM, Lohse M, Usadel B (2014) Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30:2114–2120

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Homann OR, Johnson AD (2010) MochiView: versatile software for genome browsing and DNA motif analysis. BMC Biol 8:49

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Robinson JT, Thorvaldsdóttir H, Winckler W et al (2011) Integrative genomics viewer. Nat Biotechnol 29:24–26

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Kent JW, Sugnet CW, Furey TS et al (2002) The human genome browser at UCSC. Genome Res 12:996–1006

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Pritchard JR, Chao MC, Abel S et al (2014) ARTIST: high-resolution genome-wide assessment of fitness using transposon-insertion sequencing. PLoS Genet 10:e1004782

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Barquist L, Mayho M, Cummins C et al (2016) The TraDIS toolkit: sequencing and analysis for dense transposon mutant libraries. Bioinformatics 32:1109–1111

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. McCoy K, Antonio ML, van Opijnen T (2017) MAGenTA: a galaxy implemented tool for complete Tn-Seq analysis and data visualization. Bioinformatics 33:2781–2783

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. Blanchard AM, Leigh JA, Egan SA et al (2015) Transposon insertion mapping with PIMMS - pragmatic insertional mutation mapping system. Front Genet 6:139

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. Solaimanpour S, Sarmiento F, Mrázek J (2015) Tn-seq explorer: a tool for analysis of high-throughput sequencing data of transposon mutant libraries. PLoS One 10:e0126070

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  43. Turner KH, Wessel AK, Palmer GC et al (2015) Essential genome of Pseudomonas aeruginosa in cystic fibrosis sputum. Proc Natl Acad Sci U S A 112:4110–4115

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. DeJesus MA, Ambadipudi C, Baker R et al (2015) TRANSIT--A software tool for Himar1 TnSeq analysis. PLoS Comput Biol 11:e1004401

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  45. Goodman AL, Wu M, Gordon JI (2011) Identifying microbial fitness determinants by insertion sequencing using genome-wide transposon mutant libraries. Nat Protoc 6:1969–1980

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  46. Mandal RK, Jiang T, Kwon Y (2017) Essential genome of Campylobacter jejuni. BMC Genomics 18:616

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  47. Nilsson M, Givskov M, Tolker-Nielsen T (2019) Transposon mutagenesis in Streptococcus species. Methods Mol Biol 2016:39–49

    Article  PubMed  CAS  Google Scholar 

  48. Lin T, Gao L (2018) Genome-wide mutagenesis in Borrelia burgdorferi. Methods Mol Biol 1690:201–223

    Article  PubMed  CAS  Google Scholar 

  49. Caruccio N (2011) Preparation of next-generation sequencing libraries using Nextera™ technology: simultaneous DNA fragmentation and adaptor tagging by in vitro transposition. Methods Mol Biol 733:241–255

    Article  PubMed  CAS  Google Scholar 

  50. Gorbacheva T, Quispe-Tintaya W, Popov VN et al (2015) Improved transposon-based library preparation for the ion torrent platform. BioTechniques 58:200–202

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  51. Solonenko SA, Ignacio-Espinoza CJ, Alberti A et al (2013) Sequencing platform and library preparation choices impact viral metagenomes. BMC Genomics 14:320

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  52. Gordon A (2008) FASTX-Toolkit

    Google Scholar 

  53. Langmead B (2010) Aligning short sequencing reads with Bowtie. Curr Protoc Bioinformatics. Chapter 11:Unit 11.7

    Google Scholar 

  54. Institute B (2019) Picard toolkit

    Google Scholar 

  55. Li H, Handsaker B, Wysoker A et al (2009) The sequence alignment/map format and SAMtools. Bioinformatics 25:2078–2079

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  56. Quinlan AR and Kindlon N (2019) Bedtools

    Google Scholar 

  57. Ponstingl H (2015) SMALT

    Google Scholar 

  58. Li H (2011) Tabix: fast retrieval of sequence features from generic TAB-delimited files. Bioinformatics 27:718–719

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  59. Team CR (2013) R: a language and environment for statistical computing

    Google Scholar 

  60. Bates D, Carey V, Dettling M, et al (2002) Bioconductor

    Google Scholar 

  61. Anaconda (2016) Anaconda Software Distribution

    Google Scholar 

  62. Afgan E, Baker D, Batut B et al (2018) The galaxy platform for accessible, reproducible and collaborative biomedical analyses: 2018 update. Nucleic Acids Res 46:gky379

    Article  CAS  Google Scholar 

  63. Anders S, Huber W (2010) Differential expression analysis for sequence count data. Genome Biol 11:R106

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  64. Wickham H, François R, Henry L, et al (2018) Dplyr: a grammar of data manipulation

    Google Scholar 

  65. Walt S, Colbert CS, Varoquaux G (2011) The NumPy array: a structure for efficient numerical computation. Comput Sci Eng 13:22–30

    Article  Google Scholar 

  66. Seabold S and Perktold J (2010) Statsmodels: econometric and statistical modeling with python

    Google Scholar 

  67. Virtanen P, Gommers R, Oliphant TE, et al (2019) SciPy 1.0--fundamental algorithms for scientific computing in python

    Google Scholar 

  68. Hunter JD (2007) Matplotlib: a 2D graphics environment. Comput Sci Eng 9:90–95

    Article  Google Scholar 

  69. wiredfool, Clark A, Hugo, et al (2016) Pillow: 3.1.0

    Google Scholar 

  70. Team T (2019) wxPython

    Google Scholar 

  71. Schoenborn O (2016) PyPubSub

    Google Scholar 

  72. Goryshin I, Reznikoff WS (1998) Tn 5 in vitro transposition. J Biol Chem 273:7367–7374

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This material is based upon work supported by the Great Lakes Bioenergy Research Center, U.S. Department of Energy, Office of Science, Office of Biological and Environmental Research under Award Number DE-SC0018409.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Timothy J. Donohue .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Myers, K.S., Behari Lal, P., Noguera, D.R., Donohue, T.J. (2022). Using Genome Scale Mutant Libraries to Identify Essential Genes. In: Zhang, R. (eds) Essential Genes and Genomes. Methods in Molecular Biology, vol 2377. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1720-5_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1720-5_12

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1719-9

  • Online ISBN: 978-1-0716-1720-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics