Skip to main content

Identification of Intronic Lariat-Derived Circular RNAs in Arabidopsis by RNA Deep Sequencing

  • Protocol
  • First Online:
Plant Circular RNAs

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2362))

Abstract

Lariat RNAs are well-known by-products of pre-mRNA splicing in eukaryotes, which are produced by the excised introns when the 5′ splice site (5′ ss) joins with the branchpoint (BP) during splicing. In general, most of lariat RNAs are usually linearized by RNA debranching enzyme 1 (DBR1), followed by degradation for intron turnover. However, with the high-throughput RNA sequencing technology and bioinformatics methods, increasing evidences have shown that many lariat RNAs can stably accumulate under physiological conditions in both animals and plants. Here, we describe a large-scale analysis to systematically identify the lariat RNAs (i.e., intronic circular RNAs) in Arabidopsis by utilizing the RNA-sequencing data.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Konarska MM, Grabowski PJ, Padgett RA et al (1985) Characterization of the branch site in lariat RNAs produced by splicing of mRNA precursors. Nature 313:552–557. https://doi.org/10.1038/313552a0

    Article  CAS  PubMed  Google Scholar 

  2. Lee Y, Rio DC (2015) Mechanisms and regulation of alternative pre-mRNA splicing. Annu Rev Biochem 84:1–33. https://doi.org/10.1146/annurev-biochem-060614-034316

    Article  CAS  Google Scholar 

  3. Reed R, Maniatis T (1985) Intron sequences involved in lariat formation during pre-mRNA splicing. Cell 41:95–105. https://doi.org/10.1016/0092-8674(85)90064-9

    Article  CAS  PubMed  Google Scholar 

  4. Frendewey D, Keller W (1985) Stepwise assembly of a pre-mRNA splicing complex requires U-snRNPs and specific intron sequences. Cell 42:355–367. https://doi.org/10.1016/s0092-8674(85)80131-8

    Article  CAS  PubMed  Google Scholar 

  5. Aebi M, Hornig H, Padgett RA et al (1986) Sequence requirements for splicing of higher eukaryotic nuclear pre-mRNA. Cell 47:555–565. https://doi.org/10.1016/0092-8674(86)90620-3

    Article  CAS  PubMed  Google Scholar 

  6. Ruskin B, Krainer AR, Maniatis T et al (1984) Excision of an intact intron as a novel lariat structure during pre-mRNA splicing in vitro. Cell 38:317–331. https://doi.org/10.1016/0092-8674(84)90553-1

    Article  CAS  PubMed  Google Scholar 

  7. Ruskin B, Green M (1985) An RNA processing activity that debranches RNA lariats. Science 229:135–140. https://doi.org/10.1126/science.2990042

    Article  CAS  PubMed  Google Scholar 

  8. Nam K, Lee G, Trambley J et al (1997) Severe growth defect in a Schizosaccharomyces pombe mutant defective in intron lariat degradation. Mol Cell Biol 17:809–818. https://doi.org/10.1128/mcb.17.2.809

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Talhouarne GJS, Gall JG (2018) Lariat intronic RNAs in the cytoplasm of vertebrate cells. Proc Natl Acad Sci U S A 115:201808816. https://doi.org/10.1073/pnas.1808816115

    Article  CAS  Google Scholar 

  10. Zhang X, Zhang Y, Wang T et al (2019) A comprehensive map of intron branchpoints and lariat RNAs in plants. Plant Cell 31:956–973. https://doi.org/10.1105/tpc.18.00711

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Cheng J, Zhang Y, Li Z et al (2018) A lariat-derived circular RNA is required for plant development in Arabidopsis. Sci China Life Sci 61:204–213. https://doi.org/10.1007/s11427-017-9182-3

    Article  CAS  PubMed  Google Scholar 

  12. Li Z, Wang S, Cheng J et al (2016) Intron lariat RNA inhibits microRNA biogenesis by sequestering the dicing complex in Arabidopsis. PLoS Genet 12:e1006422. https://doi.org/10.1371/journal.pgen.1006422

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Tay ML-I, Pek JW (2017) Maternally inherited stable intronic sequence RNA triggers a self-reinforcing feedback loop during development. Curr Biol 27:1062–1067. https://doi.org/10.1016/j.cub.2017.02.040

    Article  CAS  PubMed  Google Scholar 

  14. Osman I, Pek JW (2018) A sisRNA/miRNA Axis prevents loss of germline stem cells during starvation in drosophila. Stem Cell Rep 11:4–12. https://doi.org/10.1016/j.stemcr.2018.06.002

    Article  CAS  Google Scholar 

  15. Wong JT, Akhbar F, Ng AYE et al (2017) DIP1 modulates stem cell homeostasis in drosophila through regulation of sisR-1. Nat Commun 8:759. https://doi.org/10.1038/s41467-017-00684-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Ng SSJ, Zheng RT, Osman I et al (2018) Generation of drosophila sisRNAs by independent transcription from cognate introns. iScience 4:68–75. https://doi.org/10.1016/j.isci.2018.05.010

    Article  CAS  Google Scholar 

  17. Suzuki H, Zuo Y, Wang J et al (2006) Characterization of RNase R-digested cellular RNA source that consists of lariat and circular RNAs from pre-mRNA splicing. Nucleic Acids Res 34:e63. https://doi.org/10.1093/nar/gkl151

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Zhang Y, Zhang X-O, Chen T et al (2013) Circular intronic long noncoding RNAs. Mol Cell 51:792–806. https://doi.org/10.1016/j.molcel.2013.08.017

    Article  CAS  PubMed  Google Scholar 

  19. Talhouarne GJS, Gall JG (2014) Lariat intronic RNAs in the cytoplasm of Xenopus tropicalis oocytes. RNA 20:1476–1487. https://doi.org/10.1261/rna.045781.114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Neil CR, Fairbrother WG (2019) Intronic RNA: Ad’junk’ mediator of post-transcriptional gene regulation. Biochim Biophys Acta Gene Regul Mech 1862:194439. https://doi.org/10.1016/j.bbagrm.2019.194439

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Jeck WR, Sorrentino JA, Wang K et al (2013) Circular RNAs are abundant, conserved, and associated with ALU repeats. RNA 19:141–157. https://doi.org/10.1261/rna.035667.112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Xiao M-S, Wilusz JE (2019) An improved method for circular RNA purification using RNase R that efficiently removes linear RNAs containing G-quadruplexes or structured 3′ ends. Nucleic Acids Res 47:8755–8769. https://doi.org/10.1093/nar/gkz576

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Taggart AJ, Lin C-L, Shrestha B et al (2017) Large-scale analysis of branchpoint usage across species and cell lines. Genome Res 27:639–649. https://doi.org/10.1101/gr.202820.115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Mercer TR, Clark MB, Andersen SB et al (2015) Genome-wide discovery of human splicing branchpoints. Genome Res 25:290–303. https://doi.org/10.1101/gr.182899.114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Bitton DA, Rallis C, Jeffares DC et al (2014) LaSSO, a strategy for genome-wide mapping of intronic lariats and branch points using RNA-seq. Genome Res 24:1169–1179. https://doi.org/10.1101/gr.166819.113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Pineda JMB, Bradley RK (2018) Most human introns are recognized via multiple and tissue-specific branchpoints. Genes Dev 32:577–591. https://doi.org/10.1101/gad.312058.118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Kim D, Langmead B, Salzberg SL (2015) HISAT: a fast spliced aligner with low memory requirements. Nat Methods 12:357–360. https://doi.org/10.1038/nmeth.3317

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Liao Y, Smyth GK, Shi W (2014) featureCounts: an efficient general purpose program for assigning sequence reads to genomic features. Bioinformatics 30:923–930. https://doi.org/10.1093/bioinformatics/btt656

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Binglian Zheng .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Wang, T., Zhang, X., Zheng, B. (2021). Identification of Intronic Lariat-Derived Circular RNAs in Arabidopsis by RNA Deep Sequencing. In: Vaschetto, L.M. (eds) Plant Circular RNAs. Methods in Molecular Biology, vol 2362. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1645-1_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1645-1_5

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1644-4

  • Online ISBN: 978-1-0716-1645-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics