Skip to main content

Elaboration Pipeline for the Management of MALDI-MS Imaging Datasets

  • Protocol
  • First Online:
Proteomics Data Analysis

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2361))

Abstract

Matrix-assisted laser desorption/ionization (MALDI)—time of flight (TOF)—mass spectrometry imaging (MSI) enables the spatial localization of proteins to be mapped directly on tissue sections, simultaneously detecting hundreds in a single analysis. However, the large data size, as well as the complexity of MALDI-MSI proteomics datasets, requires the appropriate tools and statistical approaches in order to reduce the complexity and mine the dataset in a successful manner. Here, a pipeline for the management of MALDI-MSI data is described, starting with preprocessing of the raw data, followed by statistical analysis using both supervised and unsupervised statistical approaches and, finally, annotation of those discriminatory protein signals highlighted by the data mining procedure.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Smith A, L’Imperio V, Ajello E et al (2017) The putative role of MALDI-MSI in the study of membranous nephropathy. Biochim Biophys Acta Proteins Proteom 1865:865–874. https://doi.org/10.1016/j.bbapap.2016.11.013

    Article  CAS  PubMed  Google Scholar 

  2. Capitoli P, Galimberti S et al (2019) MALDI-MSI as a complementary diagnostic tool in cytopathology: a pilot study for the characterization of thyroid nodules. Cancers (Basel) 11:1377. https://doi.org/10.3390/cancers11091377

    Article  CAS  Google Scholar 

  3. Trim PJ, Snel MF (2016) Small molecule MALDI MS imaging: current technologies and future challenges. Methods 104:127–141. https://doi.org/10.1016/j.ymeth.2016.01.011

    Article  CAS  PubMed  Google Scholar 

  4. Denti V, Piga I, Guarnerio S et al (2020) Antigen retrieval and its effect on the MALDI-MSI of lipids in formalin-fixed paraffin-embedded tissue. J Am Soc Mass Spectrom 31:1619–1624. https://doi.org/10.1021/jasms.0c00208

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Heijs B, Holst S, Briaire-De Bruijn IH et al (2016) Multimodal mass spectrometry imaging of N-glycans and proteins from the same tissue section. Anal Chem 88:7745–7753. https://doi.org/10.1021/acs.analchem.6b01739

    Article  CAS  PubMed  Google Scholar 

  6. Holzlechner M, Strasser K, Zareva E et al (2017) In situ characterization of tissue-resident immune cells by MALDI mass spectrometry imaging. J Proteome Res 16:65–76. https://doi.org/10.1021/acs.jproteome.6b00610

    Article  CAS  PubMed  Google Scholar 

  7. De Sio G, Smith AJ, Galli M et al (2015) A MALDI-mass spectrometry imaging method applicable to different formalin-fixed paraffin-embedded human tissues. Mol BioSyst 11:1–8. https://doi.org/10.1039/c4mb00716f

    Article  Google Scholar 

  8. Alexandrov T (2012) MALDI imaging mass spectrometry: statistical data analysis and current computational challenges. BMC Bioinformatics 13:S11. https://doi.org/10.1186/1471-2105-13-s16-s11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Smith A, L’Imperio V, Denti V et al (2019) High spatial resolution MALDI-MS imaging in the study of membranous nephropathy. Proteomics Clin Appl 13:1–10. https://doi.org/10.1002/prca.201800016

    Article  CAS  Google Scholar 

  10. Fonville JM, Carter C, Cloarec O et al (2012) Robust data processing and normalization strategy for MALDI mass spectrometric imaging. Anal Chem 84:1310–1319. https://doi.org/10.1021/ac201767g

    Article  CAS  PubMed  Google Scholar 

  11. Veselkov K, Sleeman J, Claude E et al (2018) BASIS: high-performance bioinformatics platform for processing of large-scale mass spectrometry imaging data in chemically augmented histology. Sci Rep 8:1–11. https://doi.org/10.1038/s41598-018-22499-z

    Article  CAS  Google Scholar 

  12. Bemis KD, Harry A, Eberlin LS et al (2015) Cardinal: an R package for statistical analysis of mass spectrometry-based imaging experiments. Bioinformatics 31:2418–2420. https://doi.org/10.1093/bioinformatics/btv146

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Bokhart MT, Nazari M, Garrard KP, Muddiman DC (2018) MSiReader v1.0: evolving open-source mass spectrometry imaging software for targeted and untargeted analyses. J Am Soc Mass Spectrom 29:8–16. https://doi.org/10.1007/s13361-017-1809-6

    Article  CAS  PubMed  Google Scholar 

  14. Strohalm M, Kavan D, Novák P et al (2010) mMass 3: a cross-platform software environment for precise analysis of mass spectrometric data. Anal Chem 82:4648–4651. https://doi.org/10.1021/ac100818g

    Article  CAS  PubMed  Google Scholar 

  15. Smith A, Piga I, Galli M et al (2017) Matrix-assisted laser desorption/ionisation mass spectrometry imaging in the study of gastric cancer: a mini review. Int J Mol Sci 18(12):2588. https://doi.org/10.3390/ijms18122588

    Article  CAS  PubMed Central  Google Scholar 

  16. Galli M, Zoppis I, Smith A et al (2016) Machine learning approaches in MALDI-MSI: clinical applications. Expert Rev Proteomics 13:685–696. https://doi.org/10.1080/14789450.2016.1200470

    Article  CAS  PubMed  Google Scholar 

  17. Smith A, Galli M, Piga I et al (2019) Molecular signatures of medullary thyroid carcinoma by matrix-assisted laser desorption/ionisation mass spectrometry imaging. J Proteome 191:114–123. https://doi.org/10.1016/j.jprot.2018.03.021

    Article  CAS  Google Scholar 

  18. Alexandrov T, Kobarg JH (2011) Efficient spatial segmentation of large imaging mass spectrometry datasets with spatially aware clustering. Bioinformatics 27:230–238. https://doi.org/10.1093/bioinformatics/btr246

    Article  CAS  Google Scholar 

  19. van den Berg RA, Hoefsloot HCJ, Westerhuis JA et al (2006) Centering, scaling, and transformations: improving the biological information content of metabolomics data. BMC Genomics 7:142. https://doi.org/10.1186/1471-2164-7-142

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrew Smith .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Smith, A., Piga, I., Denti, V., Chinello, C., Magni, F. (2021). Elaboration Pipeline for the Management of MALDI-MS Imaging Datasets. In: Cecconi, D. (eds) Proteomics Data Analysis. Methods in Molecular Biology, vol 2361. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1641-3_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1641-3_8

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1640-6

  • Online ISBN: 978-1-0716-1641-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics