Skip to main content

Facile Chemoselective Modification of Thioethers Generates Chiral Center-Induced Helical Peptides

  • Protocol
  • First Online:
Peptide Conjugation

Abstract

The modulation of protein-protein interactions (PPIs) is a promising way for interrogating disease. Stapled peptides that stabilize peptides into a fixed α-helical conformation via chemical means are important representative compounds for regulating PPIs. The effect of the secondary conformation of peptides on the biophysical properties has not been explicitly elucidated due to the difficulty of obtaining peptide epimers with the same chemical composition but different conformations. Herein, we systematically designed and demonstrated the concept of “Chiral Center-Induced Helicity” (CIH) to stabilize the secondary structure of peptides. By introducing a precise R-configuration chiral center on the side-ring of a peptide, researchers can decisively regulate the secondary structure of peptides. Through the study of CIH peptides, we found that increasing the helicity can significantly enhance the stability of peptides and improve the cell membrane penetrating capability of the peptides. Moreover, the substitution group in the chiral center could contribute to additional interactions with the binding groove, which shows great significance for fragment-based drug design. This chapter will focus on the method involved in this research, including specific protocols of the synthesis and basic characterization of CIH peptides in Subheading 3.1. In addition, we have also extended the concept of CIH to dual-chiral center systems, including sulfoxide-based and sulfonium-based in-tether chiral center peptides, which we will introduce in Subheadings 3.2 and 3.3.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Stelzl U, Worm U, Lalowski M et al (2005) A human protein-protein interaction network: a resource for annotating the proteome. Cell 122:957–968

    Article  CAS  PubMed  Google Scholar 

  2. Azzarito V, Long K, Murphy NS et al (2013) Inhibition of alpha-helix-mediated protein-protein interactions using designed molecules. Nat Chem 5:161–173

    Article  CAS  PubMed  Google Scholar 

  3. Hopkins AL, Groom CR (2002) The druggable genome. Nat Rev Drug Discov 1:727–730

    Article  CAS  PubMed  Google Scholar 

  4. Verdine GL, Hilinski GJ (2012) Stapled peptides for intracellular drug targets. Methods Enzymol 503:3–33

    Article  CAS  PubMed  Google Scholar 

  5. Tsomaia N (2015) Peptide therapeutics: targeting the undruggable space. Eur J Med Chem 94:459–470

    Article  CAS  PubMed  Google Scholar 

  6. Craik DJ, Fairlie DP, Liras S (2013) The future of peptide-based drugs. Chem Biol Drug Des 81:136–147

    Article  CAS  PubMed  Google Scholar 

  7. Jochim AL, Arora PS (2010) Systematic analysis of helical protein interfaces reveals targets for synthetic inhibitors. ACS Chem Biol 5:919–923

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Marqusee S, Baldwin RL (1987) Helix stabilization by Glu-...Lys+ salt bridges in short peptides of de novo design. Proc Natl Acad Sci U S A 84:8898–8902

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Felix AM, Heimer EP, Wang CT et al (1988) Synthesis, biological activity and conformational analysis of cyclic GRF analogs. Int J Pept Protein Res 32:441–454

    Article  CAS  PubMed  Google Scholar 

  10. Shepherd NE, Hoang HN, Abbenante G et al (2005) Single turn peptide alpha helices with exceptional stability in water. J Am Chem Soc 127:2974–2983

    Article  CAS  PubMed  Google Scholar 

  11. Osapay G, Taylor JW (1992) Multicyclic polypeptide model compounds. 2. Synthesis and conformational properties of a highly alpha-helical uncosapeptide constrained by 3 side-chain to side-chain lactam bridges. J Am Chem Soc 114:6966–6973

    Article  CAS  Google Scholar 

  12. Phelan JC, Skelton NJ, Braisted AC et al (1997) A general method for constraining short peptides to an alpha-helical conformation. J Am Chem Soc 119:455–460

    Article  CAS  Google Scholar 

  13. Yu CX, Taylor JW (1999) Synthesis and study of peptides with semirigid i and i+7 side-chain bridges designed for alpha-helix stabilization. Bioorg Med Chem 7:161–175

    Article  CAS  PubMed  Google Scholar 

  14. Fujimoto K, Kajino M, Inouye M (2008) Development of a series of cross-linking agents that effectively stabilize alpha-helical structures in various short peptides. Chemistry 14:857–863

    Article  CAS  PubMed  Google Scholar 

  15. Jackson DY, Schultz PG (1991) An antibody-catalyzed Cis trans isomerization reaction. J Am Chem Soc 113:2319–2321

    Article  CAS  Google Scholar 

  16. Leduc AM, Trent JO, Wittliff JL et al (2003) Helix-stabilized cyclic peptides as selective inhibitors of steroid receptor-coactivator interactions. Proc Natl Acad Sci U S A 100:11273–11278

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Gutscher M, Pauleau AL, Marty L et al (2008) Real-time imaging of the intracellular glutathione redox potential. Nat Methods 5:553–559

    Article  CAS  PubMed  Google Scholar 

  18. Jo H, Meinhardt N, Wu Y et al (2012) Development of alpha-helical calpain probes by mimicking a natural protein-protein interaction. J Am Chem Soc 134:17704–17713

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Muppidi A, Wang Z, Li X et al (2011) Achieving cell penetration with distance-matching cysteine cross-linkers: a facile route to cell-permeable peptide dual inhibitors of Mdm2/Mdmx. Chem Commun 47:9396–9398

    Article  CAS  Google Scholar 

  20. Spokoyny AM, Zou YK, Ling JJ et al (2013) A Perfluoroaryl-cysteine SNAr chemistry approach to unprotected peptide stapling. J Am Chem Soc 135:5946–5949

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Wang Y, Chou DH (2015) A thiol-ene coupling approach to native peptide stapling and macrocyclization. Angew Chem Int Ed Engl 54:10931–10934

    Article  CAS  PubMed  Google Scholar 

  22. Sletten EM, Bertozzi CR (2009) Bioorthogonal chemistry: fishing for selectivity in a sea of functionality. Angew Chem Int Ed Engl 48:6974–6998

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Kawamoto SA, Coleska A, Ran X et al (2012) Design of triazole-stapled BCL9 alpha-helical peptides to target the beta-catenin/B-cell CLL/lymphoma 9 (BCL9) protein-protein interaction. J Med Chem 55:1137–1146

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Lau YH, de Andrade P, Quah ST et al (2014) Functionalised staple linkages for modulating the cellular activity of stapled peptides. Chem Sci 5:1804–1809

    Article  CAS  Google Scholar 

  25. Chapman RN, Dimartino G, Arora PS (2004) A highly stable short alpha-helix constrained by a main-chain hydrogen-bond surrogate. J Am Chem Soc 126:12252–12253

    Article  CAS  PubMed  Google Scholar 

  26. Dimartino G, Wang DY, Chapman RN et al (2005) Solid-phase synthesis of hydrogen-bond surrogate-derived alpha-helices. Org Lett 7:2389–2392

    Article  CAS  PubMed  Google Scholar 

  27. Miller SE, Kallenbach NR, Arora PS (2012) Reversible alpha-helix formation controlled by a hydrogen bond surrogate. Tetrahedron 68:4434–4437

    Article  CAS  PubMed  Google Scholar 

  28. Mahon AB, Arora PS (2012) Design, synthesis and protein-targeting properties of thioether-linked hydrogen bond surrogate helices. Chem Commun 48:1416–1418

    Article  CAS  Google Scholar 

  29. Henchey LK, Porter JR, Ghosh I et al (2010) High specificity in protein recognition by hydrogen-bond-surrogate alpha-helices: selective inhibition of the p53/MDM2 complex. Chembiochem 11:2104–2107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Wang D, Liao W, Arora PS (2005) Enhanced metabolic stability and protein-binding properties of artificial alpha helices derived from a hydrogen-bond surrogate: application to Bcl-xL. Angew Chem Int Ed Engl 44:6525–6529

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Wang D, Lu M, Arora PS (2008) Inhibition of HIV-1 fusion by hydrogen-bond-surrogate-based alpha helices. Angew Chem Int Ed Engl 2008(47):1879–1882

    Article  CAS  Google Scholar 

  32. Henchey LK, Kushal S, Dubey R et al (2010) Inhibition of hypoxia inducible factor 1-transcription coactivator interaction by a hydrogen bond surrogate alpha-helix. J Am Chem Soc 132:941–943

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Patgiri A, Yadav KK, Arora PS (2011) An orthosteric inhibitor of the Ras-Sos interaction. Nat Chem Biol 7:585–587

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Schafmeister CE, Po J, Verdine GL (2000) An all-hydrocarbon cross-linking system for enhancing the helicity and metabolic stability of peptides. J Am Chem Soc 2000(122):5891–5892

    Article  CAS  Google Scholar 

  35. Kim YW, Kutchukian PS, Verdine GL (2010) Introduction of all-hydrocarbon i, i+3 staples into alpha-helices via ring-closing olefin metathesis. Org Lett 12:3046–3049

    Article  CAS  PubMed  Google Scholar 

  36. Kim YW, Verdine GL (2009) Stereochemical effects of all-hydrocarbon tethers in i, i+4 stapled peptides. Bioorg Med Chem Lett 19:2533–2536

    Article  CAS  PubMed  Google Scholar 

  37. Shim SY, Kim YW, Verdine GL (2013) A new i, i+3 peptide stapling system for alpha-helix stabilization. Chem Bio Drug Design 82:635–642

    Article  CAS  Google Scholar 

  38. Hilinski GJ, Kim YW, Hong J et al (2014) Stitched alpha-helical peptides via Bis ring-closing metathesis. J Am Chem Soc 136:12314–12322

    Article  CAS  PubMed  Google Scholar 

  39. Hu K, Geng H, Zhang QZ et al (2016) An in-tether chiral center modulates the helicity, cell permeability, and target binding affinity of a peptide. Angew Chem Int Ed 55:8013–8017

    Article  CAS  Google Scholar 

  40. Hu K, Li WJ, Yu MY et al (2016) Investigation of cellular uptakes of the in-tether chiral-center induced helical pentapeptides. Bioconjug Chem 27:2824–2847

    Article  CAS  PubMed  Google Scholar 

  41. Hu K, Sun CJ, Li ZG (2017) Reversible and versatile on-tether modification of chiral-center-induced helical peptides. Bioconjug Chem 28:2001–2007

    Article  CAS  PubMed  Google Scholar 

  42. Hu K, Sun CJ, Yang D et al (2017) A precisely positioned chiral center in an i, i+7 tether modulates the helicity of the backbone peptide. Chem Commun 53:6728–6731

    Article  CAS  Google Scholar 

  43. Hu K, Sun CJ, Yu MY et al (2017) Dual in-tether chiral centers modulate peptide helicity. Bioconjug Chem 2017(28):1537–1543

    Article  CAS  Google Scholar 

  44. Hu K, Yin F, Yu MY et al (2017) In-tether chiral center induced helical peptide modulators target p53-MDM2/MDMX and inhibit tumor growth in stem-like Cancer cell. Theranostics 7:4566–4576

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Li JX, Hu K, Chen HL et al (2017) An in-tether chiral center modulates the proapoptotic activity of the KLA peptide. Chem Commun 53:10452–10455

    Article  CAS  Google Scholar 

  46. Li WJ, Hu K, Zhang QZ et al (2018) N terminal N-methylation modulates chiral centre induced helical (CIH) peptides' biophysical properties. Chem Commun 54:1865–1868

    Article  CAS  Google Scholar 

  47. Hu K, Jiang YX, Xiong W et al (2018) Tuning peptide self-assembly by an in-tether chiral center. Sci Adv 2018:4

    Google Scholar 

  48. Xiong W, Hu K, Li Z et al (2019) A wearable system based on core-shell structured peptide-Co9S8 supercapacitor and triboelectric nanogenerator. Nano Energy 2019:66

    Google Scholar 

  49. Hu K, Xiong W, Sun C et al (2020) Self-assembly of constrained cyclic peptides controlled by ring size. CCS Chem 2:42–51

    Article  CAS  Google Scholar 

  50. Shi X, Liu Y, Zhao R et al (2018) Constructing thioether/vinyl sulfide-tethered helical peptides via photo-induced thiol-ene/yne hydrothiolation. J Vis Exp 138:e57356

    Google Scholar 

Download references

Acknowledgments

We acknowledge financial support from the Natural Science Foundation of China grants 21778009, 21977010, 81701818, and 51803006; the Natural Science Foundation of Guangdong Province, 2020A1515010522; the Shenzhen Science and Technology Innovation Committee, JCYJ20180507181527112 and JCYJ201805081522131455. We acknowledge financial support from Beijing National Laboratory of Molecular Science open grant BNLMS20160112 and Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions grant 2019SHIBS0004. This work is supported by High-Performance Computing Platform of Peking University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zigang Li .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Liu, Y., Hu, K., Yin, F., Li, Z. (2021). Facile Chemoselective Modification of Thioethers Generates Chiral Center-Induced Helical Peptides. In: Hussein, W.M., Stephenson, R.J., Toth, I. (eds) Peptide Conjugation. Methods in Molecular Biology, vol 2355. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1617-8_23

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1617-8_23

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1616-1

  • Online ISBN: 978-1-0716-1617-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics