Skip to main content

Pre-Embedding Immunostaining of Brain Tissue and Three-Dimensional Imaging with FIB-SEM

  • Protocol
  • First Online:
Receptor and Ion Channel Detection in the Brain

Abstract

FIB-SEM is an electron microscopy technique that allows the acquisition of serial sections in an automated manner. A Focused Ion Beam (FIB) is directed toward the specimen, removing material from its surface. Since the FIB can be positioned and controlled on a nanometer scale, the specimen surface can be milled so that a thin layer of a specified thickness is removed. The Scanning Electron Microscope (SEM) column is then used to acquire an image from the freshly milled surface. To obtain a series of images, the milling/imaging cycle is repeated automatically. This technique can be used with any pre-embedding method that yields an electron-dense end product. We describe here an immunocytochemical protocol to be used on vibratome brain sections. After the immunocytochemical procedure, the sections are flat embedded in epoxy resin and prepared for FIB-SEM imaging. Serial image acquisition, visualization, and analysis in 3D are also briefly described.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Stevens JK, Davis TL, Friedman N, Sterling P (1980) A systematic approach to reconstructing microcircuitry by electron microscopy of serial sections. Brain Res 2:265–293. https://doi.org/10.1016/0165-0173(80)90010-7

    Article  CAS  PubMed  Google Scholar 

  2. Harris KM, Perry E, Bourne J et al (2006) Uniform serial sectioning for transmission electron microscopy. J Neurosci 26:12101–12103. https://doi.org/10.1523/JNEUROSCI.3994-06.2006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Hoffpauir BK, Pope BA, Spirou GA (2007) Serial sectioning and electron microscopy of large tissue volumes for 3D analysis and reconstruction: a case study of the calyx of held. Nat Protoc 2:9–22. https://doi.org/10.1038/nprot.2007.9

    Article  CAS  PubMed  Google Scholar 

  4. Bock DD, Lee W-CA, Kerlin AM et al (2011) Network anatomy and in vivo physiology of visual cortical neurons. Nature 471:177–182. https://doi.org/10.1038/nature09802

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Lee TJ, Kumar A, Balwani AH et al (2018) Large-scale neuroanatomy using LASSO: loop-based automated serial sectioning operation. PLoS One 13:e0206172. https://doi.org/10.1371/journal.pone.0206172

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Denk W, Horstmann H (2004) Serial block-face scanning electron microscopy to reconstruct three-dimensional tissue nanostructure. PLoS Biol 2:e329. https://doi.org/10.1371/journal.pbio.0020329

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Knott G, Marchman H, Wall D, Lich B (2008) Serial section scanning electron microscopy of adult brain tissue using focused ion beam milling. J Neurosci 28:2959–2964. https://doi.org/10.1523/JNEUROSCI.3189-07.2008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Merchán-Pérez A, Rodriguez J-R, Alonso-Nanclares L et al (2009) Counting synapses using FIB/SEM microscopy: a true revolution for ultrastructural volume reconstruction. Front Neuroanat 3:18. https://doi.org/10.3389/neuro.05.018.2009

    Article  PubMed  PubMed Central  Google Scholar 

  9. Kasthuri N, Hayworth KJ, Berger DR et al (2015) Saturated reconstruction of a volume of neocortex. Cell 162:648–661. https://doi.org/10.1016/j.cell.2015.06.054

    Article  CAS  PubMed  Google Scholar 

  10. Kubota Y, Sohn J, Kawaguchi Y (2018) Large volume electron microscopy and neural microcircuit analysis. Front Neural Circuits 12:98. https://doi.org/10.3389/fncir.2018.00098

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Helmstaedter M (2013) Cellular-resolution connectomics: challenges of dense neural circuit reconstruction. Nat Methods 10:501–507. https://doi.org/10.1038/nmeth.2476

    Article  CAS  PubMed  Google Scholar 

  12. Langford RM (2006) Focused ion beams techniques for nanomaterials characterization. Microsc Res Tech 69:538–549. https://doi.org/10.1002/jemt.20324

    Article  CAS  PubMed  Google Scholar 

  13. Anton-Sanchez L, Bielza C, Merchan-Perez A et al (2014) Three-dimensional distribution of cortical synapses: a replicated point pattern-based analysis. Front Neuroanat 8:85. https://doi.org/10.3389/fnana.2014.00085

    Article  PubMed  PubMed Central  Google Scholar 

  14. Merchán-Pérez A, Rodríguez J-R, González S et al (2014) Three-dimensional spatial distribution of synapses in the neocortex: a dual-beam electron microscopy study. Cereb Cortex 24:1579–1588. https://doi.org/10.1093/cercor/bht018

    Article  PubMed  Google Scholar 

  15. Santuy A, Rodriguez J-R, DeFelipe J, Merchan-Perez A (2018) Volume electron microscopy of the distribution of synapses in the neuropil of the juvenile rat somatosensory cortex. Brain Struct Funct 223:77–90. https://doi.org/10.1007/s00429-017-1470-7

    Article  CAS  PubMed  Google Scholar 

  16. Santuy A, Rodriguez J-R, DeFelipe J, Merchan-Perez A (2018) Study of the size and shape of synapses in the juvenile rat somatosensory cortex with 3D electron microscopy. eNeuro 5:e0377–17.2017. https://doi.org/10.1523/ENEURO.0377-17.2017

    Article  CAS  Google Scholar 

  17. Santuy A, Turégano-López M, Rodríguez JR et al (2018) A quantitative study on the distribution of mitochondria in the neuropil of the juvenile rat somatosensory cortex. Cereb Cortex 28:3673–3684. https://doi.org/10.1093/cercor/bhy159

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Turegano-Lopez M, Santuy A, DeFelipe J, Merchan-Perez A (2020) Size, shape, and distribution of multivesicular bodies in the juvenile rat somatosensory cortex: a 3D electron microscopy study. Cereb Cortex 30:1887–1901. https://doi.org/10.1093/cercor/bhz211

    Article  CAS  PubMed  Google Scholar 

  19. Domínguez-Álvaro M, Montero-Crespo M, Blazquez-Llorca L et al (2018) Three-dimensional analysis of synapses in the transentorhinal cortex of Alzheimer’s disease patients. Acta Neuropathol Commun 6:20. https://doi.org/10.1186/s40478-018-0520-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Domínguez-Álvaro M, Montero-Crespo M, Blazquez-Llorca L et al (2019) 3D electron microscopy study of synaptic Organization of the Normal Human Transentorhinal Cortex and its Possible Alterations in Alzheimer’s disease. eNeuro 6. https://doi.org/10.1523/ENEURO.0140-19.2019

  21. Montero-Crespo M, Domínguez-Álvaro M, Rondón-Carrillo P, et al (2020) Three-dimensional synaptic organization of the human hippocampal CA1 field. bioRxiv 2020.02.25.964080. https://doi.org/10.1101/2020.02.25.964080

  22. Bosch C, Martínez A, Masachs N et al (2015) FIB/SEM technology and high-throughput 3D reconstruction of dendritic spines and synapses in GFP-labeled adult-generated neurons. Front Neuroanat 9:60. https://doi.org/10.3389/fnana.2015.00060

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Bosch C, Masachs N, Exposito-Alonso D et al (2016) Reelin regulates the maturation of dendritic spines, synaptogenesis and glial Ensheathment of newborn granule cells. Cereb Cortex 26:4282–4298. https://doi.org/10.1093/cercor/bhw216

    Article  PubMed  PubMed Central  Google Scholar 

  24. Rodriguez-Moreno J, Rollenhagen A, Arlandis J et al (2018) Quantitative 3D ultrastructure of Thalamocortical synapses from the “Lemniscal” ventral posteromedial nucleus in mouse barrel cortex. Cereb Cortex 28:3159–3175. https://doi.org/10.1093/cercor/bhx187

    Article  PubMed  Google Scholar 

  25. Rodriguez-Moreno J, Porrero C, Rollenhagen A et al (2020) Area-specific synapse structure in branched posterior nucleus axons reveals a new level of complexity in Thalamocortical networks. J Neurosci 40:2663–2679. https://doi.org/10.1523/JNEUROSCI.2886-19.2020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Kikuchi T, Gonzalez-Soriano J, Kastanauskaite A et al (2020) Volume electron microscopy study of the relationship between synapses and astrocytes in the developing rat somatosensory cortex. Cereb Cortex 30:3800–3819. https://doi.org/10.1093/cercor/bhz343

    Article  PubMed  PubMed Central  Google Scholar 

  27. Morales J, Alonso-Nanclares L, Rodríguez J-R et al (2011) Espina: a tool for the automated segmentation and counting of synapses in large stacks of electron microscopy images. Front Neuroanat 5:18. https://doi.org/10.3389/fnana.2011.00018

    Article  PubMed  PubMed Central  Google Scholar 

  28. Gray EG (1959) Axo-somatic and axo-dendritic synapses of the cerebral cortex: an electron microscope study. J Anat 93:420–433

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Colonnier M (1968) Synaptic patterns on different cell types in the different laminae of the cat visual cortex. An electron microscope study. Brain Res 9:268–287

    Article  CAS  Google Scholar 

  30. Howard CV, Reed MG (2005) Unbiased stereology : three-dimensional measurement in microscopy, 2nd edn. Garland Science/BIOS Scientific Publishers, Oxon, UK

    Google Scholar 

  31. Morales J, Rodríguez A, Rodríguez J-R et al (2013) Characterization and extraction of the synaptic apposition surface for synaptic geometry analysis. Front Neuroanat 7:20. https://doi.org/10.3389/fnana.2013.00020

    Article  PubMed  PubMed Central  Google Scholar 

  32. Rodríguez J-R, Turégano-López M, DeFelipe J, Merchán-Pérez A (2018) Neuroanatomy from mesoscopic to nanoscopic scales: an improved method for the observation of semithin sections by high-resolution scanning electron microscopy. Front Neuroanat 12:14. https://doi.org/10.3389/fnana.2018.00014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The authors would like to thank L. Valdés and M.C. Álvarez for their technical assistance and Nick Guthrie for his excellent text editing. This work was partially supported by grants from the following entities: Centro de Investigación en Red sobre Enfermedades Neurodegenerativas (CIBERNED, CB06/05/0066, Spain); and the Spanish Ministerio de Ciencia, Innovación y Universidades (grant PGC2018-094307-B-I00 and the Cajal Blue Brain Project [the Spanish partner of the Blue Brain Project initiative from EPFL, Switzerland]).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Angel Merchán-Pérez .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Turégano-López, M., Rodríguez, JR., Alonso-Nanclares, L., González-Soriano, J., DeFelipe, J., Merchán-Pérez, A. (2021). Pre-Embedding Immunostaining of Brain Tissue and Three-Dimensional Imaging with FIB-SEM. In: Lujan, R., Ciruela, F. (eds) Receptor and Ion Channel Detection in the Brain. Neuromethods, vol 169. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1522-5_20

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1522-5_20

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1521-8

  • Online ISBN: 978-1-0716-1522-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics