Skip to main content

Synthetic Biology Medicine and Bacteria-Based Cancer Therapeutics

  • Protocol
  • First Online:
Book cover RNA Scaffolds

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2323))

Abstract

Spontaneous tumor regression following bacterial infection has been observed for hundreds of years. These observations along with anecdotal medical findings in 1890s led to the development of Coley’s “toxins,” consisting of killed Streptococcus pyogenes and Serratia marcescens bacteria, as the first cancer immunotherapy. The use of this approach, however, was not widely accepted at the time especially after the introduction of radiation therapy as a treatment for cancer in the early 1900s. Over the last 30–40 years there has been renewed interest in the use of bacteria to treat human solid tumors. This is based on the observation that various nonpathogenic anaerobic bacteria can infiltrate and replicate within solid tumors when given intravenously. Bacteria tested as potential anticancer agents include the Gram-positive obligate anaerobes Bifidobacterium and Clostridium, as well as the gram-negative facultative anaerobe Salmonella. Recent advances in synthetic biology and clinical success in cancer immunotherapy provide renewed momentum for developing bacteria-based cancer immunotherapy for cancer treatment and should allow greater potential for the development of novel therapeutic approaches for this devastating disease.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Zaidi N, Jaffee EM (2019) Immunotherapy transforms cancer treatment. J Clin Invest 129(1):46–47

    Article  Google Scholar 

  2. Yang Y (2015) Cancer immunotherapy: harnessing the immune system to Battle cancer. J Clin Invest 125(9):3335–3337

    Article  Google Scholar 

  3. Ebbell B (1937) The papyrus Ebers: the greatest Egyptian medical document. Oxford University Press, London

    Google Scholar 

  4. Tanchou S (1844) Recherches sur le traitement médical des tumeurs cancéreuses du sein. Ouvrage practique basé sur trois cents observations (extraits d’un grand nombre d’auteurs). Paris: G Baillière,

    Google Scholar 

  5. Dussaussoy (1787). Dissertations et observations sur la gangrène dans les hôpitaux. Lyon

    Google Scholar 

  6. Busch W (1868) Niederrheinische Gesellshaft fur Natur und Heilkunde in Bonn. Berlin Klin Wochenschr 5:137–138

    Google Scholar 

  7. Fehleisen F (1886) On erysipelas. In: Cheyne WW (ed) Recent essays on bacteria in relation to disease. New Sydenham Society, London, pp 263–286

    Google Scholar 

  8. Fehleisen F (1883) Die Aetiologie des Erysipels. Theodor Fischer, Berlin

    Google Scholar 

  9. McCarthy EF (2006) The toxins ofWilliam B. Coley and the treatment of bone and soft-tissue sarcomas. Iowa Orthop J 26:154–158

    PubMed  PubMed Central  Google Scholar 

  10. Zhou S, Gravekamp C, Bermudes D, Liu K (2018) Tumour-targeting bacteria engineered to fight cancer. Nat Rev Cancer 18(12):727–743

    Article  CAS  Google Scholar 

  11. Sedighi M, Bialvaei AZ, Hamblin MR et al (2019) Therapeutic bacteria to combat cancer; current advances, challenges, and opportunities. Cancer Med 8(6):3167–3181

    PubMed  PubMed Central  Google Scholar 

  12. Laliani G, Sorboni SG, Lari R et al (2020) Bacteria and cancer: different sides of the same coin. Life Sci 246:117398

    Article  CAS  Google Scholar 

  13. Dang LH, Bettegowda C, Huso DL et al (2001) Combination bacteriolytic therapy for the treatment of experimental tumors. Proc Natl Acad Sci U S A 98:15155–15160

    Article  CAS  Google Scholar 

  14. Low KB, Ittensohn M, Le T et al (1999) Lipid a mutant salmonella with suppressed virulence and TNFalpha induction retain tumor-targeting in vivo. Nat Biotechnol 17:37–41

    Article  CAS  Google Scholar 

  15. Xiang S, Fruehauf J, Li CJ (2006) Short hairpin RNA-expressing bacteria elicit RNA interference in mammals. Nat Biotechnol 24(6):697–702

    Article  CAS  Google Scholar 

  16. Toso JF, Gill VJ, Hwu P et al (2002) Phase I study of the intravenous administration of attenuated salmonella typhimurium to patients with metastatic melanoma. J Clin Oncol 20:142–152

    Article  Google Scholar 

  17. Heimann DM, Rosenberg SA (2003) Continuous intravenous administration of live genetically modified salmonella typhimurium in patients with metastatic melanoma. J Immunother 26:179–180

    Article  Google Scholar 

  18. US National Library of Medicine (2013). ClinicalTrials.gov http://www.clinicaltrials.gov/ct2/show/NCT00004216

  19. US National Library of Medicine (2013). ClinicalTrials.gov http://www.clinicaltrials.gov/ct2/show/NCT00006254

  20. US National Library of Medicine (2008). ClinicalTrials.gov http://www.clinicaltrials.gov/ct2/show/NCT00004988

  21. Nemunaitis J, Cunningham C, Senzer N et al (2003) Pilot trial of genetically modified, attenuated salmonella expressing the E. coli cytosine deaminase gene in refractory cancer patients. Cancer Gene Ther 10:737–744

    Article  CAS  Google Scholar 

  22. US National Library of Medicine (2017). ClinicalTrials.gov http://www.clinicaltrials.gov/ct2/show/NCT01562626

  23. US National Library of Medicine (2016). ClinicalTrials.gov. http://www.clinicaltrials.gov/ct2/show/NCT00358397

  24. US National Library of Medicine (2016). ClinicalTrials.gov http://www.clinicaltrials.gov/ct2/show/NCT01118819

  25. US National Library of Medicine (2018). ClinicalTrials.gov http://www.clinicaltrials.gov/ct2/show/NCT01924689

  26. US National Library of Medicine (2018). ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT03435952

  27. Wu MR, Jusiak B, Lu TK (2019) Engineering advanced cancer therapies with synthetic biology. Nat Rev Cancer 19(4):187–195

    PubMed  Google Scholar 

  28. Trieu V, Hwang L, Ng K et al (2017) First-in-human phase I study of bacterial RNA interference therapeutic CEQ508 in patients with familial adenomatous polyposis (FAP). Ann Oncol 28(suppl_5):v158–v208

    Google Scholar 

  29. Xiang S, Keates AC, Fruehauf J et al (2009) In vitro and in vivo gene silencing by TransKingdom RNAi (tkRNAi). Methods Mol Biol 487:147–160

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Andrew C. Keates or Chiang J. Li .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Lee, J., Keates, A.C., Li, C.J. (2021). Synthetic Biology Medicine and Bacteria-Based Cancer Therapeutics . In: Ponchon, L. (eds) RNA Scaffolds. Methods in Molecular Biology, vol 2323. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1499-0_19

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1499-0_19

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1498-3

  • Online ISBN: 978-1-0716-1499-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics