Skip to main content

Targeted Lipidomics of Mycobacterial Lipids and Glycolipids

  • Protocol
  • First Online:
Mycobacteria Protocols

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2314))

Abstract

Decades of study have highlighted the richness and uniqueness of the repertoire of lipid and glycolipid families produced by mycobacteria. Many of these families potently regulate host immune responses, in stimulatory or suppressive ways. Thus, the global study of this repertoire in different genetic backgrounds or under model conditions of infection is gaining interest. Despite the difficulties associated with the specificities of this repertoire, the field of mass spectrometry-based lipidomics of mycobacteria has recently made considerable progress, particularly at the analytical level. There is still considerable scope for further progress, especially with regard to the development of an efficient bioinfomatics pipeline for the analysis of the large datasets generated. This chapter describes an HPLC-MS methodology allowing the simultaneous screening of more than 20 of the lipid families produced by mycobacteria and provides recommendations to analyze the generated data given the state-of-the-art.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Jurowski K, Kochan K, Walczak J, Baranska M, Piekoszewski W, Buszewski B (2017) Analytical techniques in Lipidomics: state of the art. Crit Rev Anal Chem 47(5):418–437. https://doi.org/10.1080/10408347.2017.1310613

    Article  CAS  PubMed  Google Scholar 

  2. Zullig T, Trotzmuller M, Kofeler HC (2020) Lipidomics from sample preparation to data analysis: a primer. Anal Bioanal Chem 412(10):2191–2209. https://doi.org/10.1007/s00216-019-02241-y

    Article  CAS  PubMed  Google Scholar 

  3. Minnikin DE, Brennan PJ (2020) Lipids of clinically significant mycobacteria. In: Goldfine H (ed) Health Consequences of Microbial Interactions with Hydrocarbons, Oils, and Lipids. Handbook of Hydrocarbon and Lipid Microbiology. Springer, Cham, pp 1–76. https://doi.org/10.1007/978-3-319-72473-7_7-1

    Chapter  Google Scholar 

  4. Becker K, Sander P (2016) Mycobacterium tuberculosis lipoproteins in virulence and immunity—fighting with a double-edged sword. FEBS Lett 590(21):3800–3819. https://doi.org/10.1002/1873-3468.12273

    Article  CAS  PubMed  Google Scholar 

  5. Neyrolles O, Guilhot C (2011) Recent advances in deciphering the contribution of Mycobacterium tuberculosis lipids to pathogenesis. Tuberculosis 91(3):187–195. https://doi.org/10.1016/j.tube.2011.01.002

    Article  CAS  PubMed  Google Scholar 

  6. Ray A, Cot M, Puzo G, Gilleron M, Nigou J (2013) Bacterial cell wall macroamphiphiles: pathogen−/microbe-associated molecular patterns detected by mammalian innate immune system. Biochimie 95(1):33–42. https://doi.org/10.1016/j.biochi.2012.06.007

    Article  CAS  PubMed  Google Scholar 

  7. Chiaradia L, Lefebvre C, Parra J, Marcoux J, Burlet-Schiltz O, Etienne G, Tropis M, Daffe M (2017) Dissecting the mycobacterial cell envelope and defining the composition of the native mycomembrane. Sci Rep 7(1):12807. https://doi.org/10.1038/s41598-017-12718-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Hoffmann C, Leis A, Niederweis M, Plitzko JM, Engelhardt H (2008) Disclosure of the mycobacterial outer membrane: cryo-electron tomography and vitreous sections reveal the lipid bilayer structure. Proc Natl Acad Sci U S A 105(10):3963–3967. https://doi.org/10.1073/pnas.0709530105

    Article  PubMed  PubMed Central  Google Scholar 

  9. Zuber B, Chami M, Houssin C, Dubochet J, Griffiths G, Daffe M (2008) Direct visualization of the outer membrane of mycobacteria and corynebacteria in their native state. J Bacteriol 190(16):5672–5680. https://doi.org/10.1128/JB.01919-07

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Bansal-Mutalik R, Nikaido H (2014) Mycobacterial outer membrane is a lipid bilayer and the inner membrane is unusually rich in diacyl phosphatidylinositol dimannosides. Proc Natl Acad Sci U S A 111(13):4958–4963. https://doi.org/10.1073/pnas.1403078111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Sani M, Houben EN, Geurtsen J, Pierson J, de Punder K, van Zon M, Wever B, Piersma SR, Jimenez CR, Daffe M, Appelmelk BJ, Bitter W, van der Wel N, Peters PJ (2010) Direct visualization by cryo-EM of the mycobacterial capsular layer: a labile structure containing ESX-1-secreted proteins. PLoS Pathog 6(3):e1000794. https://doi.org/10.1371/journal.ppat.1000794

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Layre E, Sweet L, Hong S, Madigan CA, Desjardins D, Young DC, Cheng TY, Annand JW, Kim K, Shamputa IC, McConnell MJ, Debono CA, Behar SM, Minnaard AJ, Murray M, Barry CE 3rd, Matsunaga I, Moody DB (2011) A comparative lipidomics platform for chemotaxonomic analysis of Mycobacterium tuberculosis. Chem Biol 18(12):1537–1549. https://doi.org/10.1016/j.chembiol.2011.10.013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Becker K, Haldimann K, Selchow P, Reinau LM, Dal Molin M, Sander P (2017) Lipoprotein glycosylation by protein-O-Mannosyltransferase (MAB_1122c) contributes to low cell envelope permeability and antibiotic resistance of mycobacterium abscessus. Front Microbiol 8:2123. https://doi.org/10.3389/fmicb.2017.02123

    Article  PubMed  PubMed Central  Google Scholar 

  14. Laneelle MA, Nigou J, Daffe M (2015) Lipid and lipoarabinomannan isolation and characterization. Methods Mol Biol 1285:77–103. https://doi.org/10.1007/978-1-4939-2450-9_5

    Article  CAS  PubMed  Google Scholar 

  15. Parra J, Marcoux J, Poncin I, Canaan S, Herrmann JL, Nigou J, Burlet-Schiltz O, Riviere M (2017) Scrutiny of Mycobacterium tuberculosis 19 kDa antigen proteoforms provides new insights in the lipoglycoprotein biogenesis paradigm. Sci Rep 7:43682. https://doi.org/10.1038/srep43682

    Article  PubMed  PubMed Central  Google Scholar 

  16. Nigou J, Gilleron M, Brando T, Puzo G (2004) Structural analysis of mycobacterial lipoglycans. Appl Biochem Biotechnol 118(1–3):253–267. https://doi.org/10.1385/abab:118:1-3:253

    Article  CAS  PubMed  Google Scholar 

  17. Slayden RA, Barry CE 3rd (2001) Analysis of the lipids of Mycobacterium tuberculosis. Methods Mol Med 54:229–245. https://doi.org/10.1385/1-59259-147-7:229

    Article  CAS  PubMed  Google Scholar 

  18. Lanéelle M, Nigou J, Daffé M (2005) Lipid and Lipoarabinomannan isolation and characterization. In: T. P, D. R (eds) Mycobacteria protocols, vol 1285. Humana Press, New York, NY. doi:https://doi.org/10.1007/978-1-4939-2450-9_5

  19. Portevin D, Sukumar S, Coscolla M, Shui G, Li B, Guan XL, Bendt AK, Young D, Gagneux S, Wenk MR (2014) Lipidomics and genomics of Mycobacterium tuberculosis reveal lineage-specific trends in mycolic acid biosynthesis. MicrobiologyOpen 3(6):823–835. https://doi.org/10.1002/mbo3.193

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Shui G, Bendt AK, Jappar IA, Lim HM, Laneelle M, Herve M, Via LE, Chua GH, Bratschi MW, Zainul Rahim SZ, Michelle AL, Hwang SH, Lee JS, Eum SY, Kwak HK, Daffe M, Dartois V, Michel G, Barry CE 3rd, Wenk MR (2012) Mycolic acids as diagnostic markers for tuberculosis case detection in humans and drug efficacy in mice. EMBO Mol Med 4(1):27–37. https://doi.org/10.1002/emmm.201100185

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Layre E, Paepe DC, Larrouy-Maumus G, Vaubourgeix J, Mundayoor S, Lindner B, Puzo G, Gilleron M (2011) Deciphering sulfoglycolipids of Mycobacterium tuberculosis. J Lipid Res 52(6):1098–1110. https://doi.org/10.1194/jlr.M013482

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Jain M, Petzold CJ, Schelle MW, Leavell MD, Mougous JD, Bertozzi CR, Leary JA, Cox JS (2007) Lipidomics reveals control of Mycobacterium tuberculosis virulence lipids via metabolic coupling. Proc Natl Acad Sci U S A 104(12):5133–5138. https://doi.org/10.1073/pnas.0610634104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Larrouy-Maumus G, Puzo G (2015) Mycobacterial envelope lipids fingerprint from direct MALDI-TOF MS analysis of intact bacilli. Tuberculosis 95(1):75–85. https://doi.org/10.1016/j.tube.2014.11.001

    Article  CAS  PubMed  Google Scholar 

  24. Gilleron M, Lindner B, Puzo G (2006) MS/MS approach for characterization of the fatty acid distribution on mycobacterial phosphatidyl-myo-inositol mannosides. Anal Chem 78(24):8543–8548. https://doi.org/10.1021/ac061574a

    Article  CAS  PubMed  Google Scholar 

  25. Hsu FF, Turk J, Owens RM, Rhoades ER, Russell DG (2007) Structural characterization of phosphatidyl-myo-inositol mannosides from Mycobacterium bovis bacillus Calmette Guerin by multiple-stage quadrupole ion-trap mass spectrometry with electrospray ionization. I. PIMs and lyso-PIMs. J Am Soc Mass Spectrom 18(3):466–478. https://doi.org/10.1016/j.jasms.2006.10.012

    Article  CAS  PubMed  Google Scholar 

  26. Hsu FF, Turk J, Owens RM, Rhoades ER, Russell DG (2007) Structural characterization of phosphatidyl-myo-inositol mannosides from Mycobacterium bovis bacillus Calmette Guerin by multiple-stage quadrupole ion-trap mass spectrometry with electrospray ionization. II. Monoacyl- and diacyl-PIMs. J Am Soc Mass Spectrom 18(3):479–492. https://doi.org/10.1016/j.jasms.2006.10.020

    Article  CAS  PubMed  Google Scholar 

  27. Fujita Y, Naka T, Doi T, Yano I (2005) Direct molecular mass determination of trehalose monomycolate from 11 species of mycobacteria by MALDI-TOF mass spectrometry. Microbiology 151(Pt 5):1443–1452. https://doi.org/10.1099/mic.0.27791-0

    Article  CAS  PubMed  Google Scholar 

  28. Fujita Y, Naka T, McNeil MR, Yano I (2005) Intact molecular characterization of cord factor (trehalose 6,6′-dimycolate) from nine species of mycobacteria by MALDI-TOF mass spectrometry. Microbiology 151(Pt 10):3403–3416. https://doi.org/10.1099/mic.0.28158-0

    Article  CAS  PubMed  Google Scholar 

  29. Madigan CA, Cheng TY, Layre E, Young DC, McConnell MJ, Debono CA, Murry JP, Wei JR, Barry CE 3rd, Rodriguez GM, Matsunaga I, Rubin EJ, Moody DB (2012) Lipidomic discovery of deoxysiderophores reveals a revised mycobactin biosynthesis pathway in Mycobacterium tuberculosis. Proc Natl Acad Sci U S A 109(4):1257–1262. https://doi.org/10.1073/pnas.1109958109

    Article  PubMed  PubMed Central  Google Scholar 

  30. Sartain MJ, Dick DL, Rithner CD, Crick DC, Belisle JT (2011) Lipidomic analyses of Mycobacterium tuberculosis based on accurate mass measurements and the novel “Mtb LipidDB”. J Lipid Res 52(5):861–872. https://doi.org/10.1194/jlr.M010363

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Galagan JE, Minch K, Peterson M, Lyubetskaya A, Azizi E, Sweet L, Gomes A, Rustad T, Dolganov G, Glotova I, Abeel T, Mahwinney C, Kennedy AD, Allard R, Brabant W, Krueger A, Jaini S, Honda B, Yu WH, Hickey MJ, Zucker J, Garay C, Weiner B, Sisk P, Stolte C, Winkler JK, Van de Peer Y, Iazzetti P, Camacho D, Dreyfuss J, Liu Y, Dorhoi A, Mollenkopf HJ, Drogaris P, Lamontagne J, Zhou Y, Piquenot J, Park ST, Raman S, Kaufmann SH, Mohney RP, Chelsky D, Moody DB, Sherman DR, Schoolnik GK (2013) The Mycobacterium tuberculosis regulatory network and hypoxia. Nature 499(7457):178–183. https://doi.org/10.1038/nature12337

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Layre E, Lee HJ, Young DC, Martinot AJ, Buter J, Minnaard AJ, Annand JW, Fortune SM, Snider BB, Matsunaga I, Rubin EJ, Alber T, Moody DB (2014) Molecular profiling of Mycobacterium tuberculosis identifies tuberculosinyl nucleoside products of the virulence-associated enzyme Rv3378c. Proc Natl Acad Sci U S A 111(8):2978–2983. https://doi.org/10.1073/pnas.1315883111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Sabareesh V, Singh G (2013) Mass spectrometry based lipid(ome) analyzer and molecular platform: a new software to interpret and analyze electrospray and/or matrix-assisted laser desorption/ionization mass spectrometric data of lipids: a case study from Mycobacterium tuberculosis. J Mass Spectrometry 48(4):465–477. https://doi.org/10.1002/jms.3163

    Article  CAS  Google Scholar 

  34. Smith CA, Want EJ, O'Maille G, Abagyan R, Siuzdak G (2006) XCMS: processing mass spectrometry data for metabolite profiling using nonlinear peak alignment, matching, and identification. Anal Chem 78(3):779–787. https://doi.org/10.1021/ac051437y

    Article  CAS  Google Scholar 

  35. Pluskal T, Castillo S, Villar-Briones A, Oresic M (2010) MZmine 2: modular framework for processing, visualizing, and analyzing mass spectrometry-based molecular profile data. BMC Bioinformatics 11:395. https://doi.org/10.1186/1471-2105-11-395

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Tsugawa H, Cajka T, Kind T, Ma Y, Higgins B, Ikeda K, Kanazawa M, VanderGheynst J, Fiehn O, Arita M (2015) MS-DIAL: data-independent MS/MS deconvolution for comprehensive metabolome analysis. Nat Methods 12(6):523–526. https://doi.org/10.1038/nmeth.3393

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Adusumilli R, Mallick P (2017) Data conversion with ProteoWizard msConvert. Methods Mol Biol 1550:339–368. https://doi.org/10.1007/978-1-4939-6747-6_23

    Article  CAS  PubMed  Google Scholar 

  38. Kessner D, Chambers M, Burke R, Agus D, Mallick P (2008) ProteoWizard: open source software for rapid proteomics tools development. Bioinformatics 24(21):2534–2536. https://doi.org/10.1093/bioinformatics/btn323

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emilie Layre .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Layre, E. (2021). Targeted Lipidomics of Mycobacterial Lipids and Glycolipids. In: Parish, T., Kumar, A. (eds) Mycobacteria Protocols. Methods in Molecular Biology, vol 2314. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1460-0_24

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1460-0_24

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1459-4

  • Online ISBN: 978-1-0716-1460-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics