Skip to main content

Isolation and Culture of Dorsal Root Ganglia (DRG) from Rodents

  • Protocol
  • First Online:
Neuronal Cell Culture

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2311))

Abstract

Preparations of peripheral sensory neurons from rodents are essential for studying the molecular mechanism of neuronal survival and physiology. Although, isolating and culturing these neurons proves difficult, often these preparations are contaminated with nonneuronal proliferating cells. Here, we describe an isolation method using a Percoll gradient and an antimitotic reagent to significantly reduce the nonneuronal cell contamination while maintaining the integrity of the rodent sensory dorsal root ganglia (DRG) neurons.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Woolf CJ, Ma Q (2007) Nociceptors—noxious stimulus detectors. Neuron 55(3):353–364

    Article  CAS  Google Scholar 

  2. Caspary T, Anderson KV (2003) Patterning cell types in the dorsal spinal cord: what the mouse mutants say. Nat Rev Neurosci 4(4):289–297

    Article  Google Scholar 

  3. Vikman KS, Kristensson K, Hill RH (2001) Sensitization of dorsal horn neurons in a two-compartment cell culture model: wind-up and long-term potentiation-like responses. J Neurosci 21(19):RC169

    Article  CAS  Google Scholar 

  4. Bolyard LA, Van Looy JW, Vasko MR (2000) Sensitization of rat sensory neurons by chronic exposure to forskolin or ‘inflammatory cocktail’ does not downregulate and requires continuous exposure. Pain 88(3):277–285

    Article  CAS  Google Scholar 

  5. Rich KM, Disch SP, Eichler ME (1989) The influence of regeneration and nerve growth factor on the neuronal cell body reaction to injury. J Neurocytol 18(5):569–576

    Article  CAS  Google Scholar 

  6. Keynes R et al (1997) Surround repulsion of spinal sensory axons in higher vertebrate embryos. Neuron 18(6):889–897

    Article  CAS  Google Scholar 

  7. Hari A et al (2004) Neurotrophins and extracellular matrix molecules modulate sensory axon outgrowth. Int J Dev Neurosci 22(2):113–117

    Article  CAS  Google Scholar 

  8. Watanabe K et al (2006) Dorsally derived netrin 1 provides an inhibitory cue and elaborates the ‘waiting period’ for primary sensory axons in the developing spinal cord. Development 133(7):1379–1387

    Article  CAS  Google Scholar 

  9. Sainath R, Gallo G (2015) The dynein inhibitor Ciliobrevin D inhibits the bidirectional transport of organelles along sensory axons and impairs NGF-mediated regulation of growth cones and axon branches. Dev Neurobiol 75(7):757–777

    Article  CAS  Google Scholar 

  10. Bray D, Thomas C, Shaw G (1978) Growth cone formation in cultures of sensory neurons. Proc Natl Acad Sci U S A 75(10):5226–5229

    Article  CAS  Google Scholar 

  11. Lamoureux P, Buxbaum RE, Heidemann SR (1998) Axonal outgrowth of cultured neurons is not limited by growth cone competition. J Cell Sci 111(Pt 21):3245–3252

    Article  CAS  Google Scholar 

  12. Burgess GM et al (1989) Second messengers involved in the mechanism of action of bradykinin in sensory neurons in culture. J Neurosci 9(9):3314–3325

    Article  CAS  Google Scholar 

  13. Adler JE, Walker PD (2000) Cyclic AMP regulates substance P expression in developing and mature spinal sensory neurons. J Neurosci Res 59(5):624–631

    Article  CAS  Google Scholar 

  14. Crawford AT et al (2008) E-cadherin expression in postnatal Schwann cells is regulated by the cAMP-dependent protein kinase a pathway. Glia 56(15):1637–1647

    Article  Google Scholar 

  15. Camarena V et al (2010) Nature and duration of growth factor signaling through receptor tyrosine kinases regulates HSV-1 latency in neurons. Cell Host Microbe 8(4):320–330

    Article  CAS  Google Scholar 

  16. Eichler ME, Rich KM (1989) Death of sensory ganglion neurons after acute withdrawal of nerve growth factor in dissociated cell cultures. Brain Res 482(2):340–346

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work is supported by an NIH grant R01NS082116 (THB) and the Comprehensive NeuroAIDS Center grant P30MH092 I 777 (MS).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tricia H. Burdo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Shekarabi, M., Robinson, J.A., Burdo, T.H. (2021). Isolation and Culture of Dorsal Root Ganglia (DRG) from Rodents. In: Amini, S., White, M.K. (eds) Neuronal Cell Culture. Methods in Molecular Biology, vol 2311. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1437-2_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1437-2_14

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1436-5

  • Online ISBN: 978-1-0716-1437-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics