Skip to main content

CRISPR Interference and Activation to Modulate Transcription in Yarrowia lipolytica

  • Protocol
  • First Online:
Yarrowia lipolytica

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2307))

Abstract

Recent developments in RNA-guided nuclease technologies have advanced the engineering of a wide range of organisms, including the nonconventional yeast Yarrowia lipolytica. Y. lipolytica has been the focus of a range of synthetic biology and metabolic engineering studies due to its high capacity to synthesize and accumulate intracellular lipids. The CRISPR-Cas9 system from Streptococcus pyogenes has been successfully adapted and used for genome editing in Y. lipolytica. However, as engineered strains are moved closer to industrialization, the need for finer control of transcription is still present. To overcome this challenge, we have developed CRISPR interference (CRISPRi) and CRISPR activation (CRISPRa) systems to allow modulating the transcription of endogenous genes. We begin this protocol chapter by describing how to use the CRISPRi system to repress expression of any gene in Y. lipolytica. A second method describes how to use the CRISPRa system to increase expression of native Y. lipolytica genes. Finally, we describe how CRISPRi or CRISPRa vectors can be combined to enable multiplexed activation or repression of more than one gene. The implementation of CRISPRi and CRISPRa systems improves our ability to control gene expression in Y. lipolytica and promises to enable more advanced synthetic biology and metabolic engineering studies in this host.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Blazeck J, Hill A, Liu L, Knight R, Miller J, Pan A, Otoupal P, Alper HS (2014) Harnessing Yarrowia lipolytica lipogenesis to create a platform for lipid and biofuel production. Nat Commun 5:3131. https://doi.org/10.1038/ncomms4131

    Article  CAS  PubMed  Google Scholar 

  2. Qiao KJ, Wasylenko TM, Zhou K, Xu P, Stephanopoulos G (2017) Lipid production in Yarrowia lipolytica is maximized by engineering cytosolic redox metabolism. Nat Biotechnol 35(2):173–177. https://doi.org/10.1038/nbt.3763

    Article  CAS  PubMed  Google Scholar 

  3. Wagner JM, Alper HS (2016) Synthetic biology and molecular genetics in non-conventional yeasts: current tools and future advances. Fungal Genet Biol 89:126–136. https://doi.org/10.1016/j.fgb.2015.12.001

    Article  CAS  PubMed  Google Scholar 

  4. Ledesma-Amaro R, Nicaud JM (2016) Yarrowia lipolytica as a biotechnological chassis to produce usual and unusual fatty acids. Prog Lipid Res 61:40–50. https://doi.org/10.1016/j.plipres.2015.12.001

    Article  CAS  PubMed  Google Scholar 

  5. Schwartz C, Frogue K, Misa J, Wheeldon I (2017) Host and pathway engineering for enhanced lycopene biosynthesis in Yarrowia lipolytica. Front Microbiol 8:2233. https://doi.org/10.3389/fmicb.2017.02233

    Article  PubMed  PubMed Central  Google Scholar 

  6. Spagnuolo M, Shabbir Hussain M, Gambill L, Blenner M (2018) Alternative substrate metabolism in Yarrowia lipolytica. Front Microbiol 9:1077. https://doi.org/10.3389/fmicb.2018.01077

    Article  PubMed  PubMed Central  Google Scholar 

  7. Hsu PD, Scott DA, Weinstein JA, Ran FA, Konermann S, Agarwala V, Li Y, Fine EJ, Wu X, Shalem O, Cradick TJ, Marraffini LA, Bao G, Zhang F (2013) DNA targeting specificity of RNA-guided Cas9 nucleases. Nat Biotechnol 31(9):827–832. https://doi.org/10.1038/nbt.2647

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Zetsche B, Gootenberg JS, Abudayyeh OO, Slaymaker IM, Makarova KS, Essletzbichler P, Volz SE, Joung J, van der Oost J, Regev A, Koonin EV, Zhang F (2015) Cpf1 is a single RNA-guided endonuclease of a class 2 CRISPR-Cas system. Cell 163(3):759–771. https://doi.org/10.1016/j.cell.2015.09.038

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Qi LS, Larson MH, Gilbert LA, Doudna JA, Weissman JS, Arkin AP, Lim WA (2013) Repurposing CRISPR as an RNA-guided platform for sequence-specific control of gene expression. Cell 152(5):1173–1183. https://doi.org/10.1016/j.cell.2013.02.022

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Gilbert LA, Larson MH, Morsut L, Liu ZR, Brar GA, Torres SE, Stern-Ginossar N, Brandman O, Whitehead EH, Doudna JA, Lim WA, Weissman JS, Qi LS (2013) CRISPR-mediated modular RNA-guided regulation of transcription in eukaryotes. Cell 154(2):442–451. https://doi.org/10.1016/j.cell.2013.06.044

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Schwartz C, Cheng J-F, Evans R, Schwartz CA, Wagner JM, Anglin S, Beitz A, Pan W, Lonardi S, Blenner M, Alper HS, Yoshikuni Y, Wheeldon I (2018) Validating genome-wide CRISPR-Cas9 function in the non-conventional yeast Yarrowia lipolytica. bioRxiv:358630. https://doi.org/10.1101/358630

  12. Lobs AK, Engel R, Schwartz C, Flores A, Wheeldon I (2017) CRISPR-Cas9-enabled genetic disruptions for understanding ethanol and ethyl acetate biosynthesis in Kluyveromyces marxianus. Biotechnol Biofuels 10:164. https://doi.org/10.1186/s13068-017-0854-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Lobs AK, Schwartz C, Wheeldon I (2017) Genome and metabolic engineering in non-conventional yeasts: current advances and applications. Synth Syst Biotechnol 2(3):198–207. https://doi.org/10.1016/j.synbio.2017.08.002

    Article  PubMed  PubMed Central  Google Scholar 

  14. Schwartz C, Frogue K, Ramesh A, Misa J, Wheeldon I (2017) CRISPRi repression of nonhomologous end-joining for enhanced genome engineering via homologous recombination in Yarrowia lipolytica. Biotechnol Bioeng 114(12):2896–2906. https://doi.org/10.1002/bit.26404

    Article  CAS  PubMed  Google Scholar 

  15. Deaner M, Mejia J, Alper HS (2017) Enabling graded and large-scale multiplex of desired genes using a dual-mode dCas9 activator in Saccharomyces cerevisiae. ACS Synth Biol 6(10):1931–1943. https://doi.org/10.1021/acssynbio.7b00163

    Article  CAS  PubMed  Google Scholar 

  16. Schwartz C, Curtis N, Lobs AK, Wheeldon I (2018) Multiplexed CRISPR Activation of Cryptic Sugar Metabolism Enables Yarrowia Lipolytica Growth on Cellobiose. Biotechnol J 13(9):e1700584. https://doi.org/10.1002/biot.201700584

    Article  CAS  PubMed  Google Scholar 

  17. Hussain MS, Gambill L, Smith S, Blenner MA (2016) Engineering promoter architecture in oleaginous yeast Yarrowia lipolytica. ACS Synth Biol 5(3):213–223. https://doi.org/10.1021/acssynbio.5b00100

    Article  CAS  Google Scholar 

  18. Schwartz CM, Hussain MS, Blenner M, Wheeldon I (2016) Synthetic RNA polymerase III promoters facilitate high-efficiency CRISPR-Cas9-mediated genome editing in Yarrowia lipolytica. ACS Synth Biol 5(4):356–359. https://doi.org/10.1021/acssynbio.5b00162

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Science Foundation (NSF CBET-1706545) and the University of California, Riverside Chancellor’s Research Fellowship. The protocols included here are based on work that has been previously published [14, 16, 18]. The authors declare no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cory Schwartz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Misa, J., Schwartz, C. (2021). CRISPR Interference and Activation to Modulate Transcription in Yarrowia lipolytica. In: Wheeldon, I., Blenner, M. (eds) Yarrowia lipolytica. Methods in Molecular Biology, vol 2307. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1414-3_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1414-3_6

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1413-6

  • Online ISBN: 978-1-0716-1414-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics