Skip to main content

Targeted Lipidomics of Drosophila melanogaster During Development

  • Protocol
  • First Online:
Mass Spectrometry-Based Lipidomics

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2306))

Abstract

Lipids play critical roles in developmental processes, and alterations in lipid metabolism are linked to a wide range of human diseases, including neurodegeneration, cancer, metabolic diseases, and microbial infections. Drosophila melanogaster, more commonly known as the fruit fly, is a powerful organism for developmental biology and human disease research. We have previously developed a comprehensive biochemical tool, based on liquid chromatography-mass spectrometry (LC-MS), to probe the dynamics of lipid remodeling during D. melanogaster development. This chapter introduces a step-by-step protocol for extracting and analyzing lipids across all developmental stages (embryo, larvae, pupa, and adult) of D. melanogaster. The targeted semi-quantitative approach offers a comprehensive coverage of more than 400 lipid species spanning the lipid classes, glycerophospholipids, sphingolipids, triacylglycerols, and sterols.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ugur B, Chen K, Bellen HJ (2016) Drosophila tools and assays for the study of human diseases. Dis Model Mech 9(3):235–244. https://doi.org/10.1242/dmm.023762

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Yamamoto S, Jaiswal M, Charng WL, Gambin T, Karaca E, Mirzaa G, Wiszniewski W, Sandoval H, Haelterman NA, Xiong B, Zhang K, Bayat V, David G, Li T, Chen K, Gala U, Harel T, Pehlivan D, Penney S, Vissers L, de Ligt J, Jhangiani SN, Xie Y, Tsang SH, Parman Y, Sivaci M, Battaloglu E, Muzny D, Wan YW, Liu Z, Lin-Moore AT, Clark RD, Curry CJ, Link N, Schulze KL, Boerwinkle E, Dobyns WB, Allikmets R, Gibbs RA, Chen R, Lupski JR, Wangler MF, Bellen HJ (2014) A drosophila genetic resource of mutants to study mechanisms underlying human genetic diseases. Cell 159(1):200–214. https://doi.org/10.1016/j.cell.2014.09.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Acharya U, Patel S, Koundakjian E, Nagashima K, Han X, Acharya JK (2003) Modulating sphingolipid biosynthetic pathway rescues photoreceptor degeneration. Science (New York, NY) 299(5613):1740–1743. https://doi.org/10.1126/science.1080549

    Article  CAS  Google Scholar 

  4. Carvalho M, Sampaio JL, Palm W, Brankatschk M, Eaton S, Shevchenko A (2012) Effects of diet and development on the Drosophila lipidome. Mol Syst Biol 8:600. https://doi.org/10.1038/msb.2012.29

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Guan XL, Cestra G, Shui G, Kuhrs A, Schittenhelm RB, Hafen E, van der Goot FG, Robinett CC, Gatti M, Gonzalez-Gaitan M, Wenk MR (2013) Biochemical membrane lipidomics during Drosophila development. Dev Cell 24(1):98–111. https://doi.org/10.1016/j.devcel.2012.11.012

    Article  CAS  PubMed  Google Scholar 

  6. Huang Y, Huang S, Lam SM, Liu Z, Shui G, Zhang YQ (2016) Acsl, the Drosophila ortholog of intellectual-disability-related ACSL4, inhibits synaptic growth by altered lipids. J Cell Sci 129(21):4034–4045. https://doi.org/10.1242/jcs.195032

    Article  CAS  PubMed  Google Scholar 

  7. Kohler K, Brunner E, Guan XL, Boucke K, Greber UF, Mohanty S, Barth JM, Wenk MR, Hafen E (2009) A combined proteomic and genetic analysis identifies a role for the lipid desaturase Desat1 in starvation-induced autophagy in Drosophila. Autophagy 5(7):980–990. https://doi.org/10.4161/auto.5.7.9325

    Article  CAS  PubMed  Google Scholar 

  8. Laurinyecz B, Peter M, Vedelek V, Kovacs AL, Juhasz G, Maroy P, Vigh L, Balogh G, Sinka R (2016) Reduced expression of CDP-DAG synthase changes lipid composition and leads to male sterility in Drosophila. Open Biol 6(1):50169. https://doi.org/10.1098/rsob.150169

    Article  CAS  PubMed  Google Scholar 

  9. Niehoff AC, Kettling H, Pirkl A, Chiang YN, Dreisewerd K, Yew JY (2014) Analysis of Drosophila lipids by matrix-assisted laser desorption/ionization mass spectrometric imaging. Anal Chem 86(22):11086–11092. https://doi.org/10.1021/ac503171f

    Article  CAS  PubMed  Google Scholar 

  10. Carvalho M, Schwudke D, Sampaio JL, Palm W, Riezman I, Dey G, Gupta GD, Mayor S, Riezman H, Shevchenko A, Kurzchalia TV, Eaton S (2010) Survival strategies of a sterol auxotroph. Development 137(21):3675–3685. https://doi.org/10.1242/dev.044560

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Chung H, Carroll SB (2015) Wax, sex and the origin of species: dual roles of insect cuticular hydrocarbons in adaptation and mating. Bioessays 37(7):822–830. https://doi.org/10.1002/bies.201500014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Scott D (1986) Sexual mimicry regulates the attractiveness of mated Drosophila melanogaster females. Proc Natl Acad Sci U S A 83(21):8429–8433. https://doi.org/10.1073/PNAS.83.21.8429

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Brankatschk M, Gutmann T, Knittelfelder O, Palladini A, Prince E, Grzybek M, Brankatschk B, Shevchenko A, Coskun U, Eaton S (2018) A temperature-dependent switch in feeding preference improves Drosophila development and survival in the cold. Dev Cell 46(6):781–793. e784. https://doi.org/10.1016/j.devcel.2018.05.028

    Article  CAS  PubMed  Google Scholar 

  14. Katewa SD, Akagi K, Bose N, Rakshit K, Camarella T, Zheng X, Hall D, Davis S, Nelson CS, Brem RB, Ramanathan A, Sehgal A, Giebultowicz JM, Kapahi P (2016) Peripheral circadian clocks mediate dietary restriction-dependent changes in lifespan and fat metabolism in Drosophila. Cell Metab 23(1):143–154. https://doi.org/10.1016/j.cmet.2015.10.014

    Article  CAS  PubMed  Google Scholar 

  15. Chin JSR, Ellis SR, Pham HT, Blanksby SJ, Mori K, Koh QL, Etges WJ, Yew JY (2014) Sex-specific triacylglycerides are widely conserved in Drosophila and mediate mating behavior. eLife 3:e01751. https://doi.org/10.7554/eLife.01751

    Article  PubMed  PubMed Central  Google Scholar 

  16. Wenk MR (2005) The emerging field of lipidomics. Nat Rev Drug Discov 4(7):594–610. https://doi.org/10.1038/nrd1776

    Article  CAS  PubMed  Google Scholar 

  17. Murphy RC, Gaskell SJ (2011) New applications of mass spectrometry in lipid analysis. J Biol Chem 286(29):25427–25433. https://doi.org/10.1074/jbc.R111.233478

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Wang C, Wang M, Han X (2015) Applications of mass spectrometry for cellular lipid analysis. Mol BioSyst 11(3):698–713. https://doi.org/10.1039/c4mb00586d

    Article  PubMed  PubMed Central  Google Scholar 

  19. Hsu FF, Turk J (2009) Electrospray ionization with low-energy collisionally activated dissociation tandem mass spectrometry of glycerophospholipids: mechanisms of fragmentation and structural characterization. J Chromatogr B Anal Technol Biomed Life Sci 877(26):2673–2695. https://doi.org/10.1016/j.jchromb.2009.02.033

    Article  CAS  Google Scholar 

  20. Harkewicz R, Dennis EA (2011) Applications of mass spectrometry to lipids and membranes. Annu Rev Biochem 80:301–325. https://doi.org/10.1146/annurev-biochem-060409-092612

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Smith CA, Want EJ, O'Maille G, Abagyan R, Siuzdak G (2006) XCMS: processing mass spectrometry data for metabolite profiling using nonlinear peak alignment, matching, and identification. Anal Chem 78(3):779–787. https://doi.org/10.1021/ac051437y

    Article  CAS  PubMed  Google Scholar 

  22. Pluskal T, Castillo S, Villar-Briones A, Orešič M (2010) MZmine 2: modular framework for processing, visualizing, and analyzing mass spectrometry-based molecular profile data. BMC Bioinformatics 11(1):395. https://doi.org/10.1186/1471-2105-11-395

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Tsugawa H, Cajka T, Kind T, Ma Y, Higgins B, Ikeda K, Kanazawa M, VanderGheynst J, Fiehn O, Arita M (2015) MS-DIAL: data-independent MS/MS deconvolution for comprehensive metabolome analysis. Nat Methods 12(6):523–526. https://doi.org/10.1038/nmeth.3393

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Sud M, Fahy E, Cotter D, Brown A, Dennis EA, Glass CK, Merrill AH Jr, Murphy RC, Raetz CR, Russell DW, Subramaniam S (2007) LMSD: LIPID MAPS structure database. Nucleic Acids Res 35(Database issue):D527–D532. https://doi.org/10.1093/nar/gkl838

    Article  CAS  PubMed  Google Scholar 

  25. Kind T, Liu KH, Lee DY, DeFelice B, Meissen JK, Fiehn O (2013) LipidBlast in silico tandem mass spectrometry database for lipid identification. Nat Methods 10(8):755–758. https://doi.org/10.1038/nmeth.2551

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Wolrab D, Chocholoušková M, Jirásko R, Peterka O, Holčapek M (2020) Validation of lipidomic analysis of human plasma and serum by supercritical fluid chromatography-mass spectrometry and hydrophilic interaction liquid chromatography-mass spectrometry. Anal Bioanal Chem 412(10):2375–2388. https://doi.org/10.1007/s00216-020-02473-3

    Article  CAS  PubMed  Google Scholar 

  27. Takeda H, Izumi Y, Takahashi M, Paxton T, Tamura S, Koike T, Yu Y, Kato N, Nagase K, Shiomi M, Bamba T (2018) Widely-targeted quantitative lipidomics method by supercritical fluid chromatography triple quadrupole mass spectrometry. J Lipid Res 59(7):1283–1293. https://doi.org/10.1194/jlr.D083014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Lísa M, Holčapek M (2018) UHPSFC/ESI-MS analysis of lipids. Methods Mol Biol 1730:73–82. https://doi.org/10.1007/978-1-4939-7592-1_5

    Article  CAS  PubMed  Google Scholar 

  29. Züllig T, Trötzmüller M, Köfeler HC (2020) Lipidomics from sample preparation to data analysis: a primer. Anal Bioanal Chem 412(10):2191–2209. https://doi.org/10.1007/s00216-019-02241-y

    Article  CAS  PubMed  Google Scholar 

  30. Wang J, Wang C, Han X (2019) Tutorial on lipidomics. Anal Chim Acta 1061:28–41. https://doi.org/10.1016/j.aca.2019.01.043

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Wu Z, Bagarolo GI, Thoroe-Boveleth S, Jankowski J (2020) “Lipidomics”: mass spectrometric and chemometric analyses of lipids. Adv Drug Deliv Rev 159:294. https://doi.org/10.1016/j.addr.2020.06.009

    Article  CAS  PubMed  Google Scholar 

  32. Han X, Yang K, Yang J, Fikes KN, Cheng H, Gross RW (2006) Factors influencing the electrospray intrasource separation and selective ionization of glycerophospholipids. J Am Soc Mass Spectrom 17(2):264–274. https://doi.org/10.1016/j.jasms.2005.11.003

    Article  CAS  PubMed  Google Scholar 

  33. Han X, Gross RW (2005) Shotgun lipidomics: electrospray ionization mass spectrometric analysis and quantitation of cellular lipidomes directly from crude extracts of biological samples. Mass Spectrom Rev 24(3):367–412. https://doi.org/10.1002/mas.20023

    Article  CAS  PubMed  Google Scholar 

  34. Han X, Gross RW (2008) Chapter 5: New developments in multi-dimensional mass spectrometry based shotgun lipidomics. In: Metabolomics, Metabonomics and metabolite profiling. The Royal Society of Chemistry, London, pp 134–160. https://doi.org/10.1039/9781847558107-00134

    Chapter  Google Scholar 

  35. Han X, Yang K, Gross RW (2012) Multi-dimensional mass spectrometry-based shotgun lipidomics and novel strategies for lipidomic analyses. Mass Spectrom Rev 31(1):134–178. https://doi.org/10.1002/mas.20342

    Article  CAS  PubMed  Google Scholar 

  36. Wang M, Wang C, Han RH, Han X (2016) Novel advances in shotgun lipidomics for biology and medicine. Prog Lipid Res 61:83–108. https://doi.org/10.1016/j.plipres.2015.12.002

    Article  CAS  PubMed  Google Scholar 

  37. Hsu FF (2018) Mass spectrometry-based shotgun lipidomics – a critical review from the technical point of view. Anal Bioanal Chem 410(25):6387–6409. https://doi.org/10.1007/s00216-018-1252-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Shui G, Guan XL, Gopalakrishnan P, Xue Y, Goh JS, Yang H, Wenk MR (2010) Characterization of substrate preference for Slc1p and Cst26p in Saccharomyces cerevisiae using lipidomic approaches and an LPAAT activity assay. PLoS One 5(8):e11956. https://doi.org/10.1371/journal.pone.0011956

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Shui G, Guan XL, Low CP, Chua GH, Goh JS, Yang H, Wenk MR (2010) Toward one step analysis of cellular lipidomes using liquid chromatography coupled with mass spectrometry: application to Saccharomyces cerevisiae and Schizosaccharomyces pombe lipidomics. Mol Biosyst 6(6):1008–1017. https://doi.org/10.1039/b913353d

    Article  CAS  PubMed  Google Scholar 

  40. Bligh EG, Dyer WJ (1959) A rapid method of total lipid extraction and purification. Can J Biochem Physiol 37(8):911–917. https://doi.org/10.1139/o59-099

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

X.L.G. is supported by the Nanyang Assistant Professorship from Lee Kong Chian School of Medicine, Nanyang Technological University.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Goh, E.X.Y., Guan, X.L. (2021). Targeted Lipidomics of Drosophila melanogaster During Development. In: Hsu, FF. (eds) Mass Spectrometry-Based Lipidomics. Methods in Molecular Biology, vol 2306. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1410-5_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1410-5_13

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1409-9

  • Online ISBN: 978-1-0716-1410-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics