Skip to main content

Decellularized Extracellular Matrix (ECM) as a Model to Study Fibrotic ECM Mechanobiology

  • Protocol
  • First Online:
Myofibroblasts

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2299))

Abstract

Aberrant deposition of the extracellular matrix (ECM) causes fibrosis and leads to ECM stiffening. This fibrotic ECM provides biological and biophysical stimulations to alter cell activity and drive progression of fibrosis. As an emerging discipline, mechanobiology aims to access the impact of both these cues on cell behavior and relates the reciprocity of mechanical and biological interactions; it incorporates concepts from different fields, like biology and physics, to help study the mechanical and biological facets of fibrosis extensively. A useful experimental platform in mechanobiology is decellularized ECM (dECM), which mimics the native microenvironment more accurately than standard 2D culture techniques as its composition includes similar ECM protein components and stiffness. dECM, therefore, generates more reliable results that better recapitulate in vivo fibrosis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Frantz C, Stewart KM, Weaver VM (2010) The extracellular matrix at a glance. J Cell Sci 123:4195–4200

    Article  CAS  Google Scholar 

  2. Yue B (2014) Biology of the extracellular matrix: an overview. J Glaucoma 23:S20–S23

    Article  Google Scholar 

  3. Plotnikov SV, Pasapera AM, Sabass B, Waterman CM (2012) Force fluctuations within focal adhesions mediate ECM-rigidity sensing to guide directed cell migration. Cell 151:1513–1527

    Article  CAS  Google Scholar 

  4. Campbell ID, Humphries MJ (2011) Integrin structure, activation, and interactions. Cold Spring Harb Perspect Biol 3

    Google Scholar 

  5. Lee DY et al (2008) Integrin-mediated expression of bone formation-related genes in osteoblast-like cells in response to fluid shear stress: roles of extracellular matrix, Shc, and mitogen-activated protein kinase. J Bone Miner Res 23:1140–1149

    Article  CAS  Google Scholar 

  6. Hinz B et al (2007) The myofibroblast: one function, multiple origins. Am J Pathol 170:1807–1816

    Article  CAS  Google Scholar 

  7. Bjoraker JA et al (1998) Prognostic significance of histopathologic subsets in idiopathic pulmonary fibrosis. Am J Respir Crit Care Med 157:199–203

    Article  CAS  Google Scholar 

  8. Booth AJ et al (2012) Acellular normal and fibrotic human lung matrices as a culture system for in vitro investigation. Am J Respir Crit Care Med 186:866–876

    Article  CAS  Google Scholar 

  9. Butcher DT, Alliston T, Weaver VM (2009) A tense situation: forcing tumour progression. Nat Rev Cancer 9:108–122

    Article  CAS  Google Scholar 

  10. Fiore VF et al (2018) αvβ3 integrin drives fibroblast contraction and strain stiffening of soft provisional matrix during progressive fibrosis. JCI Insight 3

    Google Scholar 

  11. Gavara N (2017) A beginner's guide to atomic force microscopy probing for cell mechanics. Microsc Res Tech 80:75–84

    Article  Google Scholar 

  12. Naba A, Clauser KR, Hynes RO (2015) Enrichment of extracellular matrix proteins from tissues and digestion into peptides for mass spectrometry analysis. J Vis Exp:e53057

    Google Scholar 

  13. Robertson J et al (2017) Characterization of the phospho-adhesome by mass spectrometry-based proteomics. Methods Mol Biol 1636:235–251

    Article  CAS  Google Scholar 

  14. Humphries JD et al (2009) Proteomic analysis of integrin-associated complexes identifies RCC2 as a dual regulator of Rac1 and Arf6. Sci Signal 2:ra51

    Article  Google Scholar 

  15. Shevchenko A, Tomas H, Havlis J, Olsen JV, Mann M (2006) In-gel digestion for mass spectrometric characterization of proteins and proteomes. Nat Protoc 1:2856–2860

    Article  CAS  Google Scholar 

  16. Jorba I, Uriarte JJ, Campillo N, Farré R, Navajas D (2017) Probing micromechanical properties of the extracellular matrix of soft tissues by atomic force microscopy. J Cell Physiol 232:19–26

    Article  CAS  Google Scholar 

  17. Hutter JL, Bechhoefer J (1993) Calibration of atomic-force microscope tips. Rev Sci Instrum 64:1868–1873

    Article  CAS  Google Scholar 

  18. Butt H-J, Jaschke M (1995) Calculation of thermal noise in atomic force microscopy. Nanotechnology 6(1):1

    Article  Google Scholar 

  19. Neumeister JM, Ducker WA (1994) Lateral, normal, and longitudinal spring constants of atomic force microscopy cantilevers. Rev Sci Instrum 65:2527–2531

    Article  Google Scholar 

  20. Brown AC, Fiore VF, Sulchek TA, Barker TH (2013) Physical and chemical microenvironmental cues orthogonally control the degree and duration of fibrosis-associated epithelial-to-mesenchymal transitions. J Pathol 229:25–35

    Article  CAS  Google Scholar 

  21. Krieg M et al (2019) Atomic force microscopy-based mechanobiology. Nat Rev Phys 1:41–57

    Article  Google Scholar 

  22. Brown AC, Fiore VF, Sulchek TA, Barker TH (2013) Physical and chemical microenvironmental cues orthogonally control the degree and duration of fibrosis-associated epithelial-to-mesenchymal transitions. J Pathol 229:25–35

    Article  CAS  Google Scholar 

  23. Viji Babu PK, Rianna C, Mirastschijski U, Radmacher M (2019) Nano-mechanical mapping of interdependent cell and ECM mechanics by AFM force spectroscopy. Sci Rep 9:12317

    Article  Google Scholar 

  24. Achterberg VF et al (2014) The nano-scale mechanical properties of the extracellular matrix regulate dermal fibroblast function. J Invest Dermatol 134:1862–1872

    Article  CAS  Google Scholar 

  25. Liu F et al (2010) Feedback amplification of fibrosis through matrix stiffening and COX-2 suppression. J Cell Biol 190:693–706

    Article  CAS  Google Scholar 

  26. Melo E et al (2014) Effects of the decellularization method on the local stiffness of acellular lungs. Tissue Eng Part C Methods 20:412–422

    Article  CAS  Google Scholar 

  27. Perea-Gil I et al (2015) In vitro comparative study of two decellularization protocols in search of an optimal myocardial scaffold for recellularization. Am J Transl Res 7:558–573

    PubMed  PubMed Central  Google Scholar 

  28. Luque T et al (2013) Local micromechanical properties of decellularized lung scaffolds measured with atomic force microscopy. Acta Biomater 9:6852–6859

    Article  CAS  Google Scholar 

  29. Fiore VF et al (2015) Conformational coupling of integrin and Thy-1 regulates Fyn priming and fibroblast mechanotransduction. J Cell Biol 211:173–190

    Article  CAS  Google Scholar 

  30. Rigato A, Miyagi A, Scheuring S, Rico F (2017) High-frequency microrheology reveals cytoskeleton dynamics in living cells. Nat Phys 13:771–775

    Article  CAS  Google Scholar 

  31. Dimitriadis EK, Horkay F, Maresca J, Kachar B, Chadwick RS (2002) Determination of elastic moduli of thin layers of soft material using the atomic force microscope. Biophys J 82:2798–2810

    Article  CAS  Google Scholar 

  32. Wegmann S, Medalsy I, Mandelkow E, Müller D (2012) The fuzzy coat of pathological human tau fibrils is a two-layered polyelectrolyte brush. Proc Natl Acad Sci U S A 110

    Google Scholar 

  33. Gavara N (2016) Combined strategies for optimal detection of the contact point in AFM force-indentation curves obtained on thin samples and adherent cells. Sci Rep 6:21267

    Article  CAS  Google Scholar 

  34. Crick SL, Yin FCP (2007) Assessing micromechanical properties of cells with atomic force microscopy: importance of the contact point. Biomech Model Mechanobiol 6:199–210

    Article  CAS  Google Scholar 

  35. Heinrich H (1882) Ueber die Berührung fester elastischer Körper. Journal für die reine und angewandte Mathematik 1882:156–171

    Article  Google Scholar 

  36. Johnson KL (1987) Contact mechanics. Cambridge University Press, New York

    Google Scholar 

  37. Frey MT, Engler A, Discher DE, Lee J, Wang YL (2007) Microscopic methods for measuring the elasticity of gel substrates for cell culture: microspheres, microindenters, and atomic force microscopy. Methods Cell Biol 83:47–65

    Article  CAS  Google Scholar 

  38. Medalsy ID, Muller DJ (2013) Nanomechanical properties of proteins and membranes depend on loading rate and electrostatic interactions. ACS Nano 7:2642–2650

    Article  CAS  Google Scholar 

  39. Fabry B et al (2001) Scaling the microrheology of living cells. Phys Rev Lett 87:148102

    Article  CAS  Google Scholar 

  40. Gavara N, Chadwick RS (2012) Determination of the elastic moduli of thin samples and adherent cells using conical AFM tips. Nat Nanotechnol 7:733–736

    Article  CAS  Google Scholar 

  41. Cross SE, Jin YS, Rao J, Gimzewski JK (2007) Nanomechanical analysis of cells from cancer patients. Nat Nanotechnol 2:780–783

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas H. Barker .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Yeh, CR., Bingham, G.C., Shetty, J., Hu, P., Barker, T.H. (2021). Decellularized Extracellular Matrix (ECM) as a Model to Study Fibrotic ECM Mechanobiology. In: Hinz, B., Lagares, D. (eds) Myofibroblasts. Methods in Molecular Biology, vol 2299. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1382-5_18

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1382-5_18

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1381-8

  • Online ISBN: 978-1-0716-1382-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics