Skip to main content

Coupled Transcriptomics for Differential Expression Analysis and Determination of Transcription Start Sites: Design and Bioinformatics

  • Protocol
  • First Online:
Antimicrobial Therapies

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2296))

  • 1373 Accesses

Abstract

The term coupled transcriptomics is coined to describe a design of an RNA-seq experiment intended for both differential expression analysis and genome-wide determination of the transcription start sites (TSS). The minimal requirements for the first analysis are two experimental conditions with at least two biological replicates enabling statistical tests. The second analysis involves the bioinformatics comparison of the data generated from a control RNA-seq library with another library enriched in primary transcripts using Terminator 5′-phosphate-dependent exonuclease, in an experiment denominated differential RNA-seq (dRNA-seq). Usually, dRNA-seq is carried out with specific protocols for library construction, different of those used for common differential expression analysis. Our experimental design allows to use the same data for both analyses, reducing the number of libraries to be generated and sequenced. This is a guide for designing a coupled transcriptomics experiment and for the subsequent bioinformatics procedures. The proposed methods can be applied to the detection and study of small RNA genes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bainbridge MN, Warren RL, Hirst M et al (2006) Analysis of the prostate cancer cell line LNCaP transcriptome using a sequencing-by-synthesis approach. BMC Genomics 7:246. https://doi.org/10.1186/1471-2164-7-246

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Emrich SJ, Barbazuk WB, Li L et al (2007) Gene discovery and annotation using LCM-454 transcriptome sequencing. Genome Res 17:69–73. https://doi.org/10.1101/gr.5145806

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Lister R, O’Malley RC, Tonti-Filippini J et al (2008) Highly integrated single-base resolution maps of the epigenome in arabidopsis. Cell 133:523–536. https://doi.org/10.1016/j.cell.2008.03.029

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Nagalakshmi U, Wang Z, Waern K et al (2008) The transcriptional landscape of the yeast genome defined by RNA sequencing. Science 320:1344–1349. https://doi.org/10.1126/science.1158441

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Croucher NJ, Thomson NR (2010) Studying bacterial transcriptomes using RNA-seq. Curr Opin Microbiol 13:619–624

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Zhao S, Fung-Leung WP, Bittner A et al (2014) Comparison of RNA-Seq and microarray in transcriptome profiling of activated T cells. PLoS One 9:e78644. https://doi.org/10.1371/journal.pone.0078644

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Wang Z, Gerstein M, Snyder M (2009) RNA-Seq: a revolutionary tool for transcriptomics. Nat Rev Genet 10:57–63

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Sorek R, Cossart P (2010) Prokaryotic transcriptomics: a new view on regulation, physiology and pathogenicity. Nat Rev Genet 11:9–16

    Article  CAS  PubMed  Google Scholar 

  9. Stark R, Grzelak M, Hadfield J (2019) RNA sequencing: the teenage years. Nat Rev Genet 20:631–656. https://doi.org/10.1038/s41576-019-0150-2

    Article  CAS  PubMed  Google Scholar 

  10. Sharma CM, Vogel J (2014) Differential RNA-seq: the approach behind and the biological insight gained. Curr Opin Microbiol 19:97–105. https://doi.org/10.1016/j.mib.2014.06.010

    Article  CAS  PubMed  Google Scholar 

  11. Wagner EGH, Romby P (2015) Small RNAs in bacteria and archaea: who they are, what they do, and how they do it. Adv Genet 90:133–208. https://doi.org/10.1016/bs.adgen.2015.05.001

    Article  CAS  PubMed  Google Scholar 

  12. Updegrove TB, Shabalina SA, Storz G (2015) How do base-pairing small RNAs evolve? FEMS Microbiol Rev 39:379–391

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Bobrovskyy M, Vanderpool CK, Richards GR (2015) Small RNAs regulate primary and secondary metabolism in gram-negative Bacteria. Microbiol Spectr 3. https://doi.org/10.1128/microbiolspec.mbp-0009-2014

  14. Hindra PP, Elliot MA (2010) Regulation of a novel gene cluster involved in secondary metabolite production in Streptomyces coelicolor. J Bacteriol 192:4973–4982. https://doi.org/10.1128/JB.00681-10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Liu WB, Shi Y, Yao LL et al (2013) Prediction and characterization of small non-coding RNAs related to secondary metabolites in Saccharopolyspora erythraea. PLoS One 8:e80676. https://doi.org/10.1371/journal.pone.0080676

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Westermann AJ, Gorski SA, Vogel J (2012) Dual RNA-seq of pathogen and host. Nat Rev Microbiol 10:618–630

    Article  CAS  PubMed  Google Scholar 

  17. Wang L, Wang S, Li W (2012) RSeQC: quality control of RNA-seq experiments. Bioinformatics 28:2184–2185. https://doi.org/10.1093/bioinformatics/bts356

    Article  CAS  PubMed  Google Scholar 

  18. Quinlan AR, Hall IM (2010) BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformatics 26:841–842. https://doi.org/10.1093/bioinformatics/btq033

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Dugar G, Herbig A, Förstner KU et al (2013) High-resolution transcriptome maps reveal strain-specific regulatory features of multiple Campylobacter jejuni isolates. PLoS Genet 9:e1003495. https://doi.org/10.1371/journal.pgen.1003495

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Schena M (2002) Microarray analysis. Wiley-Liss, Hoboken, NJ

    Google Scholar 

  21. Conesa A, Madrigal P, Tarazona S et al (2016) A survey of best practices for RNA-seq data analysis. Genome Biol 17(13). https://doi.org/10.1186/s13059-016-0881-8

  22. Schurch NJ, Schofield P, Gierliński M et al (2016) How many biological replicates are needed in an RNA-seq experiment and which differential expression tool should you use? RNA 22:839–851. https://doi.org/10.1261/rna.053959.115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Kraus AJ, Brink BG, Siegel TN (2019) Efficient and specific oligo-based depletion of rRNA. Sci Rep 9:12281. https://doi.org/10.1038/s41598-019-48692-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Culviner PH, Guegler CK, Laub MT (2020) A simple, cost-effective, and robust method for rRNA depletion in RNA-sequencing studies. MBio 11:e00010–e00020. https://doi.org/10.1128/mBio.00010-20

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Huang Y, Sheth RU, Kaufman A, Wang HH (2020) Scalable and cost-effective ribonuclease-based rRNA depletion for transcriptomics. Nucleic Acids Res 48:e20. https://doi.org/10.1093/nar/gkz1169

    Article  CAS  PubMed  Google Scholar 

  26. Williams CR, Baccarella A, Parrish JZ et al (2016) Trimming of sequence reads alters RNA-Seq gene expression estimates. BMC Bioinf 17:103. https://doi.org/10.1186/s12859-016-0956-2

    Article  CAS  Google Scholar 

  27. Robinson MD, McCarthy DJ, Smyth GK (2010) edgeR: a bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 26:139–140. https://doi.org/10.1093/bioinformatics/btp616

    Article  CAS  PubMed  Google Scholar 

  28. Love MI, Huber W, Anders S (2014) Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol 15:550. https://doi.org/10.1186/s13059-014-0550-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Law CW, Chen Y, Shi W et al (2014) Voom: precision weights unlock linear model analysis tools for RNA-seq read counts. Genome Biol 15:R29. https://doi.org/10.1186/gb-2014-15-2-r29

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Sahraeian SME, Mohiyuddin M, Sebra R et al (2017) Gaining comprehensive biological insight into the transcriptome by performing a broad-spectrum RNA-seq analysis. Nat Commun 8(59). https://doi.org/10.1038/s41467-017-00050-4

  31. Rodríguez-García A, Sola-Landa A, Barreiro C (2017) RNA-seq-based comparative transcriptomics: RNA preparation and bioinformatics. Methods Mol Biol 1645:59–72. https://doi.org/10.1007/978-1-4939-7183-1_5

    Article  CAS  PubMed  Google Scholar 

  32. Liu Y, Zhou J, White KP (2014) RNA-seq differential expression studies: more sequence or more replication? Bioinformatics 30:301–304. https://doi.org/10.1093/bioinformatics/btt688

    Article  CAS  PubMed  Google Scholar 

  33. Lei R, Ye K, Gu Z et al (2015) Diminishing returns in next-generation sequencing (NGS) transcriptome data. Gene 557:82–87. https://doi.org/10.1016/j.gene.2014.12.013

    Article  CAS  PubMed  Google Scholar 

  34. Haas BJ, Chin M, Nusbaum C et al (2012) How deep is deep enough for RNA-Seq profiling of bacterial transcriptomes? BMC Genomics 13:734. https://doi.org/10.1186/1471-2164-13-734

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work has received funding from the European Union’s Horizon 2020 Research and Innovation Programme under Grant Agreement No. 720793 TOPCAPI—Thoroughly Optimised Production Chassis for Advanced Pharmaceutical Ingredients. The authors also wish to acknowledge Spanish Government (MINECO) for funding the application of these methods to Streptomyces tsukubaensis, part of the collaborative ERA-IB TACRODRUGS project, ref. PCIN-2016-012.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antonio Rodríguez-García .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Rodríguez-García, A., Sola-Landa, A., Pérez-Redondo, R. (2021). Coupled Transcriptomics for Differential Expression Analysis and Determination of Transcription Start Sites: Design and Bioinformatics. In: Barreiro, C., Barredo, JL. (eds) Antimicrobial Therapies. Methods in Molecular Biology, vol 2296. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1358-0_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1358-0_16

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1357-3

  • Online ISBN: 978-1-0716-1358-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics