Skip to main content

DNA Damage Response in Xenopus laevis Cell-Free Extracts

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2267))

Abstract

The DNA damage response (DDR) is a coordinated cellular response to a variety of insults to the genome. DDR initiates the activation of cell cycle checkpoints preventing the propagation of damaged DNA followed by DNA repair, which are both critical in maintaining genome integrity. Several model systems have been developed to study the mechanisms and complexity of checkpoint function. Here we describe the application of cell-free extracts derived from Xenopus eggs as a model system to investigate signaling from DNA damage, modulation of DNA replication, checkpoint activation, and ultimately DNA repair. We outline the preparation of cell-free extracts, DNA substrates, and their subsequent use in assays aimed at understanding the cellular response to DNA damage. Cell-free extracts derived from the eggs of Xenopus laevis remain a robust and versatile system to decipher the biochemical steps underlying this essential characteristic of all cells, critical for genome stability.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Jackson SP, Bartek J (2009) The DNA-damage response in human biology and disease. Nature 461(7267):1071–1078

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Lanz MC, Dibitetto D, Smolka MB (2019) DNA damage kinase signaling: checkpoint and repair at 30 years. EMBO J 38(18):e101801

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  3. Goldstein M, Kastan MB (2015) The DNA damage response: implications for tumor responses to radiation and chemotherapy. Annu Rev Med 66:129–143

    Article  CAS  PubMed  Google Scholar 

  4. Murray AW (1995) The genetics of cell cycle checkpoints. Curr Opin Genet Dev 5(1):5–11

    Article  CAS  PubMed  Google Scholar 

  5. Thompson SL, Bakhoum SF, Compton DA (2010) Mechanisms of chromosomal instability. Curr Biol 20(6):R285–R295

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Zhou BB, Elledge SJ (2000) The DNA damage response: putting checkpoints in perspective. Nature 408(6811):433–439

    Article  CAS  PubMed  Google Scholar 

  7. Costanzo V, Gautier J (2004) Xenopus cell-free extracts to study DNA damage checkpoints. Methods Mol Biol 241:255–267

    CAS  PubMed  Google Scholar 

  8. Blow JJ, Laskey RA (2016) Xenopus cell-free extracts and their contribution to the study of DNA replication and other complex biological processes. Int J Dev Biol 60(7-8-9):201–207

    Article  CAS  PubMed  Google Scholar 

  9. Sannino V, Pezzimenti F, Bertora S, Costanzo V (2017) Xenopus laevis as model system to study DNA damage response and replication fork stability. Methods Enzymol 591:211–232

    Article  CAS  PubMed  Google Scholar 

  10. Parker MW, Botchan MR, Berger JM (2017) Mechanisms and regulation of DNA replication initiation in eukaryotes. Crit Rev Biochem Mol Biol 52(2):107–144

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Hoogenboom WS, Klein Douwel D, Knipscheer P (2017) Xenopus egg extract: a powerful tool to study genome maintenance mechanisms. Dev Biol 428(2):300–309

    Article  CAS  PubMed  Google Scholar 

  12. Sannino V, Kolinjivadi AM, Baldi G, Costanzo V (2016) Studying essential DNA metabolism proteins in Xenopus egg extract. Int J Dev Biol 60(7–9):221–227

    Article  CAS  PubMed  Google Scholar 

  13. Cupello S, Richardson C, Yan S (2016) Cell-free Xenopus egg extracts for studying DNA damage response pathways. Int J Dev Biol 60(7–9):229–236

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Willis J, DeStephanis D, Patel Y, Gowda V, Yan S (2012) Study of the DNA damage checkpoint using Xenopus egg extracts. J Vis Exp 69:e4449

    Google Scholar 

  15. Hashimoto Y, Costanzo V (2011) Studying DNA replication fork stability in Xenopus egg extract. Methods Mol Biol 745:437–445

    Article  CAS  PubMed  Google Scholar 

  16. Lebofsky R, Takahashi T, Walter JC (2009) DNA replication in nucleus-free Xenopus egg extracts. Methods Mol Biol 521:229–252

    Article  CAS  PubMed  Google Scholar 

  17. Blow JJ, Laskey RA (1986) Initiation of DNA replication in nuclei and purified DNA by a cell-free extract of Xenopus eggs. Cell 47(4):577–587

    Article  CAS  PubMed  Google Scholar 

  18. Smythe C, Newport JW (1991) Systems for the study of nuclear assembly, DNA replication, and nuclear breakdown in Xenopus laevis egg extracts. Methods Cell Biol 35:449–468

    Article  CAS  PubMed  Google Scholar 

  19. Ben-Yehoyada M, Wang LC, Kozekov ID, Rizzo CJ, Gottesman ME, Gautier J (2009) Checkpoint signaling from a single DNA interstrand crosslink. Mol Cell 35(5):704–715

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Costanzo V, Robertson K, Bibikova M, Kim E, Grieco D, Gottesman M, Carroll D, Gautier J (2001) Mre11 protein complex prevents double-strand break accumulation during chromosomal DNA replication. Mol Cell 8(1):137–147

    Article  CAS  PubMed  Google Scholar 

  21. Walter J, Newport J (2000) Initiation of eukaryotic DNA replication: origin unwinding and sequential chromatin association of Cdc45, RPA, and DNA polymerase alpha. Mol Cell 5(4):617–627

    Article  CAS  PubMed  Google Scholar 

  22. Walter J, Sun L, Newport J (1998) Regulated chromosomal DNA replication in the absence of a nucleus. Mol Cell 1(4):519–529

    Article  CAS  PubMed  Google Scholar 

  23. Dominguez-Sola D, Ying CY, Grandori C, Ruggiero L, Chen B, Li M, Galloway DA, Gu W, Gautier J, Dalla-Favera R (2007) Non-transcriptional control of DNA replication by c-Myc. Nature 448(7152):445–451

    Article  CAS  PubMed  Google Scholar 

  24. Williams HL, Gottesman ME, Gautier J (2012) Replication-independent repair of DNA interstrand crosslinks. Mol Cell 47(1):140–147

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Gautier J, Minshull J, Lohka M, Glotzer M, Hunt T, Maller JL (1990) Cyclin is a component of maturation-promoting factor from Xenopus. Cell 60(3):487–494

    Article  CAS  PubMed  Google Scholar 

  26. Gautier J, Norbury C, Lohka M, Nurse P, Maller J (1988) Purified maturation-promoting factor contains the product of a Xenopus homolog of the fission yeast cell cycle control gene cdc2+. Cell 54(3):433–439

    Article  CAS  PubMed  Google Scholar 

  27. Gautier J, Solomon MJ, Booher RN, Bazan JF, Kirschner MW (1991) cdc25 is a specific tyrosine phosphatase that directly activates p34cdc2. Cell 67(1):197–211

    Article  CAS  PubMed  Google Scholar 

  28. Lohka MJ, Masui Y (1983) Formation in vitro of sperm pronuclei and mitotic chromosomes induced by amphibian ooplasmic components. Science 220(4598):719–721

    Article  CAS  PubMed  Google Scholar 

  29. Murray AW, Kirschner MW (1989) Cyclin synthesis drives the early embryonic cell cycle. Nature 339(6222):275–280

    Article  CAS  PubMed  Google Scholar 

  30. Murray AW, Solomon MJ, Kirschner MW (1989) The role of cyclin synthesis and degradation in the control of maturation promoting factor activity. Nature 339(6222):280–286

    Article  CAS  PubMed  Google Scholar 

  31. Lupardus PJ, Van C, Cimprich KA (2007) Analyzing the ATR-mediated checkpoint using Xenopus egg extracts. Methods 41(2):222–231

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Tutter AV, Walter JC (2006) Chromosomal DNA replication in a soluble cell-free system derived from Xenopus eggs. Methods Mol Biol 322:121–137

    Article  CAS  PubMed  Google Scholar 

  33. Maresca TJ, Heald R (2006) Methods for studying spindle assembly and chromosome condensation in Xenopus egg extracts. Methods Mol Biol 322:459–474

    Article  CAS  PubMed  Google Scholar 

  34. Field CM, Nguyen PA, Ishihara K, Groen AC, Mitchison TJ (2014) Xenopus egg cytoplasm with intact actin. Methods Enzymol 540:399–415

    Article  CAS  PubMed  Google Scholar 

  35. Costanzo V, Robertson K, Gautier J (2004) Xenopus cell-free extracts to study the DNA damage response. Methods Mol Biol 280:213–227

    CAS  PubMed  Google Scholar 

  36. MacLean-Fletcher S, Pollard TD (1980) Mechanism of action of cytochalasin B on actin. Cell 20(2):329–341. https://doi.org/10.1016/0092-8674(80)90619-4

  37. Trenz K, Errico A, Costanzo V (2008) Plx1 is required for chromosomal DNA replication under stressful conditions. EMBO J 27(6):876–885

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Sparks J, Walter JC (2019) Extracts for Analysis of DNA Replication in a Nucleus-Free System. Cold Spring Harb Protoc 2019

    Google Scholar 

  39. Aze A, Sannino V, Soffientini P, Bachi A, Costanzo V (2016) Centromeric DNA replication reconstitution reveals DNA loops and ATR checkpoint suppression. Nat Cell Biol 18(6):684–691

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Peterson SE, Li Y, Chait BT, Gottesman ME, Baer R, Gautier J (2011) Cdk1 uncouples CtIP-dependent resection and Rad51 filament formation during M-phase double-strand break repair. J Cell Biol 194(5):705–720

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Aparicio T, Baer R, Gottesman M, Gautier J (2016) MRN, CtIP, and BRCA1 mediate repair of topoisomerase II-DNA adducts. J Cell Biol 212(4):399–408

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Kato N, Kawasoe Y, Williams H, Coates E, Roy U, Shi Y, Beese LS, Scharer OD, Yan H, Gottesman ME, Takahashi TS, Gautier J (2017) Sensing and Processing of DNA Interstrand Crosslinks by the Mismatch Repair Pathway. Cell Rep 21(5):1375–1385

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Costanzo V, Paull T, Gottesman M, Gautier J (2004) Mre11 assembles linear DNA fragments into DNA damage signaling complexes. PLoS Biol 2(5):E110

    Article  PubMed  PubMed Central  Google Scholar 

  44. de Jager M, van Noort J, van Gent DC, Dekker C, Kanaar R, Wyman C (2001) Human Rad50/Mre11 is a flexible complex that can tether DNA ends. Mol Cell 8(5):1129–1135

    Article  PubMed  Google Scholar 

  45. Kurth I, Gautier J (2010) Origin-dependent initiation of DNA replication within telomeric sequences. Nucleic Acids Res 38(2):467–476

    Article  CAS  PubMed  Google Scholar 

  46. Kastan MB, Bartek J (2004) Cell-cycle checkpoints and cancer. Nature 432(7015):316–323

    Article  CAS  PubMed  Google Scholar 

  47. Costanzo V, Gautier J (2003) Single-strand DNA gaps trigger an ATR- and Cdc7-dependent checkpoint. Cell Cycle 2(1):17

    Article  CAS  PubMed  Google Scholar 

  48. Kim JM, Yamada M, Masai H (2003) Functions of mammalian Cdc7 kinase in initiation/monitoring of DNA replication and development. Mutat Res 532(1-2):29–40

    Article  CAS  PubMed  Google Scholar 

  49. Liu Q, Guntuku S, Cui XS, Matsuoka S, Cortez D, Tamai K, Luo G, Carattini-Rivera S, DeMayo F, Bradley A, Donehower LA, Elledge SJ (2000) Chk1 is an essential kinase that is regulated by Atr and required for the G(2)/M DNA damage checkpoint. Genes Dev 14(12):1448–1459

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Busino L, Chiesa M, Draetta GF, Donzelli M (2004) Cdc25A phosphatase: combinatorial phosphorylation, ubiquitylation and proteolysis. Oncogene 23(11):2050–2056

    Article  CAS  PubMed  Google Scholar 

  51. Zhao S, Weng YC, Yuan SS, Lin YT, Hsu HC, Lin SC, Gerbino E, Song MH, Zdzienicka MZ, Gatti RA, Shay JW, Ziv Y, Shiloh Y, Lee EY (2000) Functional link between ataxia-telangiectasia and Nijmegen breakage syndrome gene products. Nature 405(6785):473–477

    Article  CAS  PubMed  Google Scholar 

  52. Buscemi G, Savio C, Zannini L, Micciche F, Masnada D, Nakanishi M, Tauchi H, Komatsu K, Mizutani S, Khanna K, Chen P, Concannon P, Chessa L, Delia D (2001) Chk2 activation dependence on Nbs1 after DNA damage. Mol Cell Biol 21(15):5214–5222

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Yarden RI, Pardo-Reoyo S, Sgagias M, Cowan KH, Brody LC (2002) BRCA1 regulates the G2/M checkpoint by activating Chk1 kinase upon DNA damage. Nat Genet 30(3):285–289

    Article  PubMed  Google Scholar 

  54. Zeman MK, Cimprich KA (2014) Causes and consequences of replication stress. Nat Cell Biol 16(1):2–9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Hashimoto Y, Puddu F, Costanzo V (2012) RAD51-and MRE11-dependent reassembly of uncoupled CMG helicase complex at collapsed replication forks. Nat Struct Mol Biol 19(1):17–U30

    Article  CAS  Google Scholar 

  56. O'Connell MJ, Walworth NC, Carr AM (2000) The G2-phase DNA-damage checkpoint. Trends Cell Biol 10(7):296–303

    Article  CAS  PubMed  Google Scholar 

  57. Garner E, Costanzo V (2009) Studying the DNA damage response using in vitro model systems. DNA Repair (Amst) 8(9):1025–1037

    Article  CAS  Google Scholar 

  58. Smith E, Costanzo V (2009) Responding to chromosomal breakage during M-phase: insights from a cell-free system. Cell Div 4:15

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  59. Cimprich KA (2003) Fragile sites: breaking up over a slowdown. Curr Biol 13(6):R231–R233

    Article  CAS  PubMed  Google Scholar 

  60. Costanzo V, Shechter D, Lupardus PJ, Cimprich KA, Gottesman M, Gautier J (2003) An ATR- and Cdc7-dependent DNA damage checkpoint that inhibits initiation of DNA replication. Mol Cell 11(1):203–213

    Article  CAS  PubMed  Google Scholar 

  61. MacDougall CA, Byun TS, Van C, Yee MC, Cimprich KA (2007) The structural determinants of checkpoint activation. Genes Dev 21(8):898–903

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Burden DA, Osheroff N (1998) Mechanism of action of eukaryotic topoisomerase II and drugs targeted to the enzyme. Biochim Biophys Acta 1400(1-3):139–154

    Article  CAS  PubMed  Google Scholar 

  63. Sarkaria JN, Busby EC, Tibbetts RS, Roos P, Taya Y, Karnitz LM, Abraham RT (1999) Inhibition of ATM and ATR kinase activities by the radiosensitizing agent, caffeine. Cancer Res 59(17):4375–4382

    CAS  PubMed  Google Scholar 

  64. Chong JP, Mahbubani HM, Khoo CY, Blow JJ (1995) Purification of an MCM-containing complex as a component of the DNA replication licensing system. Nature 375(6530):418–421

    Article  CAS  PubMed  Google Scholar 

  65. Pichierri P, Rosselli F (2004) Fanconi anemia proteins and the s phase checkpoint. Cell Cycle 3(6):698–700

    Article  CAS  PubMed  Google Scholar 

  66. Pichierri P, Rosselli F (2004) The DNA crosslink-induced S-phase checkpoint depends on ATR-CHK1 and ATR-NBS1-FANCD2 pathways. EMBO J 23(5):1178–1187

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Melo J, Toczyski D (2002) A unified view of the DNA-damage checkpoint. Curr Opin Cell Biol 14(2):237–245

    Article  CAS  PubMed  Google Scholar 

  68. Cook JG (2009) Replication licensing and the DNA damage checkpoint. Front Biosci (Landmark Ed) 14:5013–5030

    Article  CAS  Google Scholar 

  69. Kumagai A, Guo Z, Emami KH, Wang SX, Dunphy WG (1998) The Xenopus Chk1 protein kinase mediates a caffeine-sensitive pathway of checkpoint control in cell-free extracts. J Cell Biol 142(6):1559–1569

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Lupardus PJ, Byun T, Yee MC, Hekmat-Nejad M, Cimprich KA (2002) A requirement for replication in activation of the ATR-dependent DNA damage checkpoint. Genes Dev 16(18):2327–2332

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Fernandez-Capetillo O, Celeste A, Nussenzweig A (2003) Focusing on foci: H2AX and the recruitment of DNA-damage response factors. Cell Cycle 2(5):426–427

    Article  CAS  PubMed  Google Scholar 

  72. Paull TT, Rogakou EP, Yamazaki V, Kirchgessner CU, Gellert M, Bonner WM (2000) A critical role for histone H2AX in recruitment of repair factors to nuclear foci after DNA damage. Curr Biol 10(15):886–895

    Article  CAS  PubMed  Google Scholar 

  73. Rogakou EP, Pilch DR, Orr AH, Ivanova VS, Bonner WM (1998) DNA double-stranded breaks induce histone H2AX phosphorylation on serine 139. J Biol Chem 273(10):5858–5868

    Article  CAS  PubMed  Google Scholar 

  74. Burma S, Chen BP, Murphy M, Kurimasa A, Chen DJ (2001) ATM phosphorylates histone H2AX in response to DNA double-strand breaks. J Biol Chem 276(45):42462–42467

    Article  CAS  PubMed  Google Scholar 

  75. Fernandez-Capetillo O, Chen HT, Celeste A, Ward I, Romanienko PJ, Morales JC, Naka K, Xia Z, Camerini-Otero RD, Motoyama N, Carpenter PB, Bonner WM, Chen J, Nussenzweig A (2002) DNA damage-induced G2-M checkpoint activation by histone H2AX and 53BP1. Nat Cell Biol 4(12):993–997

    Article  CAS  PubMed  Google Scholar 

  76. Dupre A, Boyer-Chatenet L, Gautier J (2006) Two-step activation of ATM by DNA and the Mre11-Rad50-Nbs1 complex. Nat Struct Mol Biol 13(5):451–457

    Article  CAS  PubMed  Google Scholar 

  77. Ogawa H, Johzuka K, Nakagawa T, Leem SH, Hagihara AH (1995) Functions of the yeast meiotic recombination genes, MRE11 and MRE2. Adv Biophys 31:67–76

    Article  CAS  PubMed  Google Scholar 

  78. Haber JE (1998) The many interfaces of Mre11. Cell 95(5):583–586

    Article  CAS  PubMed  Google Scholar 

  79. Shechter D, Costanzo V, Gautier J (2004) ATR and ATM regulate the timing of DNA replication origin firing. Nat Cell Biol 6(7):648–655

    Article  CAS  PubMed  Google Scholar 

  80. Hickson I, Zhao Y, Richardson CJ, Green SJ, Martin NM, Orr AI, Reaper PM, Jackson SP, Curtin NJ, Smith GC (2004) Identification and characterization of a novel and specific inhibitor of the ataxia-telangiectasia mutated kinase ATM. Cancer Res 64(24):9152–9159

    Article  CAS  PubMed  Google Scholar 

  81. Reaper PM, Griffiths MR, Long JM, Charrier JD, Maccormick S, Charlton PA, Golec JM, Pollard JR (2011) Selective killing of ATM- or p53-deficient cancer cells through inhibition of ATR. Nat Chem Biol 7(7):428–430

    Article  CAS  PubMed  Google Scholar 

  82. Cano C, Barbeau OR, Bailey C, Cockcroft XL, Curtin NJ, Duggan H, Frigerio M, Golding BT, Hardcastle IR, Hummersone MG, Knights C, Menear KA, Newell DR, Richardson CJ, Smith GC, Spittle B, Griffin RJ (2010) DNA-dependent protein kinase (DNA-PK) inhibitors. Synthesis and biological activity of quinolin-4-one and pyridopyrimidin-4-one surrogates for the chromen-4-one chemotype. J Med Chem 53(24):8498–8507

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from the National Institutes of Health P01 CA174653 and R35 CA197606 to J.G. and R50 CA233182 to T.A.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean Gautier .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s)

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Aparicio Casado, T., Gautier, J. (2021). DNA Damage Response in Xenopus laevis Cell-Free Extracts. In: Manfredi, J.J. (eds) Cell Cycle Checkpoints. Methods in Molecular Biology, vol 2267. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1217-0_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1217-0_8

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1216-3

  • Online ISBN: 978-1-0716-1217-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics