Skip to main content

Engineering the Spatiotemporal Mosaic Self-Patterning of Pluripotent Stem Cells

  • Protocol
  • First Online:
Programmed Morphogenesis

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2258))

Abstract

Pluripotent stem cells (PSCs) possess the ability to self-organize into complex tissue-like structures; however, the genetic mechanisms and multicellular dynamics that direct such patterning are difficult to control. Here, we pair live imaging with controlled induction of gene knockdown by CRISPR interference (CRISPRi) to generate changes within subpopulations of human PSCs, allowing for control over organization and analysis of emergent behaviors. Specifically, we use forced aggregation of mixtures of cells with and without an inducible CRISPRi system to knockdown molecular regulators of tissue symmetry. We then track the resulting multicellular organization through fluorescence live imaging concurrent with the induction of knockdown. Overall, this technique allows for controlled initiation of symmetry breaking by CRISPRi to produce changes in cellular behavior that can be tracked over time within high-density pluripotent stem cell colonies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lancaster MA, Knoblich JA (2014) Organogenesis in a dish: modeling development and disease using organoid technologies. Science 345:1247125–1247125. https://doi.org/10.1126/science.1247125

    Article  CAS  PubMed  Google Scholar 

  2. Clevers H (2016) Modeling development and disease with organoids. Cell 165:1586–1597. https://doi.org/10.1016/j.cell.2016.05.082

    Article  CAS  PubMed  Google Scholar 

  3. Warmflash A, Sorre B, Etoc F et al (2014) A method to recapitulate early embryonic spatial patterning in human embryonic stem cells. Nat Methods 11:847–854. https://doi.org/10.1038/nmeth.3016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Bredenoord AL, Clevers H, Knoblich JA (2017) Human tissues in a dish: The research and ethical implications of organoid technology. Science 355:eaaf 9414. https://doi.org/10.1126/science.aaf9414

    Article  CAS  Google Scholar 

  5. Hookway TA, Butts JC, Lee E et al (2016) Aggregate formation and suspension culture of human pluripotent stem cells and differentiated progeny. Methods 101:11–20. https://doi.org/10.1016/j.ymeth.2015.11.027

    Article  CAS  PubMed  Google Scholar 

  6. Ungrin MD, Joshi C, Nica A et al (2008) Reproducible, ultra high-throughput formation of multicellular organization from single cell suspension-derived human embryonic stem cell aggregates. PLoS One 3(e):1565. https://doi.org/10.1371/journal.pone.0001565

    Article  CAS  Google Scholar 

  7. Mandegar MA, Huebsch N, Frolov EB et al (2016) CRISPR interference efficiently induces specific and reversible gene silencing in human iPSCs. Cell Stem Cell 18:541–553. https://doi.org/10.1016/j.stem.2016.01.022

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Larson MH, Gilbert LA, Wang X et al (2013) CRISPR interference (CRISPRi) for sequence-specific control of gene expression. Nat Protoc 8:2180–2196. https://doi.org/10.1038/nprot.2013.132

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Kurosawa H (2007) Methods for inducing embryoid body formation: in vitro differentiation system of embryonic stem cells. J Biosci Bioeng 103:389–398. https://doi.org/10.1263/jbb.103.389

    Article  CAS  PubMed  Google Scholar 

  10. Potter SW, Morris JE (1985) Development of mouse embryos in hanging drop culture. Anat Rec 211:48–56. https://doi.org/10.1002/ar.1092110109

    Article  CAS  PubMed  Google Scholar 

  11. King JA, Miller WM (2007) Bioreactor development for stem cell expansion and controlled differentiation. Curr Opin Chem Biol 11:394–398. https://doi.org/10.1016/j.cbpa.2007.05.034

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Libby AR, Joy DA, So P-L et al (2018) Spatiotemporal mosaic self-patterning of pluripotent stem cells using CRISPR interference. elife 7:e36045. https://doi.org/10.7554/eLife.36045

    Article  PubMed  PubMed Central  Google Scholar 

  13. Pedregosa F, Varoquaux G, Gramfort A et al (2011) Scikit-learn: machine learning in Python. J Mach Learn Res 12:2825–2830

    Google Scholar 

  14. Lorensen WE, Cline HE (1987) Marching cubes: a high resolution 3D surface construction algorithm. SIGGRAPH Comput Graph 21:163–169. https://doi.org/10.1145/37402.37422

    Article  Google Scholar 

  15. van der Walt S, Schönberger JL, Nunez-Iglesias J et al (2014) Scikit-image: image processing in Python. PeerJ 2:e453. https://doi.org/10.7717/peerj.453

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Todd C. McDevitt .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Libby, A.R.G., Joy, D.A., McDevitt, T.C. (2021). Engineering the Spatiotemporal Mosaic Self-Patterning of Pluripotent Stem Cells. In: Ebrahimkhani, M.R., Hislop, J. (eds) Programmed Morphogenesis. Methods in Molecular Biology, vol 2258. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1174-6_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1174-6_8

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1173-9

  • Online ISBN: 978-1-0716-1174-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics