Skip to main content

Integration of FISH and Microfluidics

  • Protocol
  • First Online:
Book cover Fluorescence In-Situ Hybridization (FISH) for Microbial Cells

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2246))

  • 1279 Accesses

Abstract

Suitable molecular methods for a faster microbial identification in food and clinical samples have been explored and optimized during the last decades. However, most molecular methods still rely on time-consuming enrichment steps prior to detection, so that the microbial load can be increased and reach the detection limit of the techniques.

In this chapter, we describe an integrated methodology that combines a microfluidic (lab-on-a-chip) platform, designed to concentrate cell suspensions and speed up the identification process in Saccharomyces cerevisiae , and a peptide nucleic acid fluorescence in situ hybridization (PNA-FISH) protocol optimized and adapted to microfluidics. Microfluidic devices with different geometries were designed, based on computational fluid dynamics simulations, and subsequently fabricated in polydimethylsiloxane by soft lithography. The microfluidic designs and PNA-FISH procedure described here are easily adaptable for the detection of other microorganisms of similar size.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Zhang D, Bi H, Liu B, Qiao L (2018) Detection of pathogenic microorganisms by microfluidics based analytical methods. Anal Chem 90:5512–5520. https://doi.org/10.1021/acs.analchem.8b00399

    Article  CAS  PubMed  Google Scholar 

  2. Jayamohan H, Sant HJ, Gale BK (2013) Applications of microfluidics for molecular diagnostics. Methods Mol Biol 949:305–334

    Article  CAS  Google Scholar 

  3. Whitesides GM (2006) The origins and the future of microfluidics. Nature 442:368–373. https://doi.org/10.1038/nature05058

    Article  CAS  PubMed  Google Scholar 

  4. Reyes DR, Iossifidis D, Auroux P-A, Manz A (2002) Micro total analysis systems. 1. Introduction, theory, and technology. Anal Chem 74:2623–2636

    Article  CAS  Google Scholar 

  5. Yager P, Domingo GJ, Gerdes J (2008) Point-of-care diagnostics for global health. Annu Rev Biomed Eng 10:107–144. https://doi.org/10.1146/annurev.bioeng.10.061807.160524

    Article  CAS  PubMed  Google Scholar 

  6. Kiechle FL, Holland CA (2009) Point-of-care testing and molecular diagnostics: miniaturization required. Clin Lab Med 29:555–560. https://doi.org/10.1016/j.cll.2009.06.013

    Article  PubMed  Google Scholar 

  7. Feng X, Du W, Luo Q, Liu B-F (2009) Microfluidic chip: next-generation platform for systems biology. Anal Chim Acta 650:83–97. https://doi.org/10.1016/j.aca.2009.04.051

    Article  CAS  PubMed  Google Scholar 

  8. Simpson PC, Roach D, Woolley AT et al (1998) High-throughput genetic analysis using microfabricated 96-sample capillary array electrophoresis microplates. Proc Natl Acad Sci U S A 95:2256–2261

    Article  CAS  Google Scholar 

  9. Jenkins G, Mansfield CD (2013) Microfluidic diagnostics. Humana, Totowa, NJ

    Book  Google Scholar 

  10. Mensinger H, Richter T, Hessel V et al (1995) Microreactor with integrated static mixer and analysis system. In: Micro total analysis systems. Springer, Dordrecht, pp 237–243

    Chapter  Google Scholar 

  11. Jacobson SC, Hergenroder R, Koutny LB, Ramsey JM (1994) High-speed separations on a microchip. Anal Chem 66:1114–1118. https://doi.org/10.1021/ac00079a029

    Article  CAS  Google Scholar 

  12. Van Den Berg A, Bergveld P (2000) Micro total analysis systems. Kluwer, Dordrecht

    Google Scholar 

  13. Effenhauser CS, Paulus A, Manz A, Widmer HM (1994) High-speed separation of antisense oligonucleotides on a micromachined capillary electrophoresis device. Anal Chem 66:2949–2953. https://doi.org/10.1021/ac00090a024

    Article  CAS  Google Scholar 

  14. Woolley AT, Mathies RA (1994) Ultra-high-speed DNA fragment separations using microfabricated capillary array electrophoresis chips. Proc Natl Acad Sci U S A 91:11348–11352

    Article  CAS  Google Scholar 

  15. Fan ZH, Harrison DJ (1994) Micromachining of capillary electrophoresis injectors and separators on glass chips and evaluation of flow at capillary intersections. Anal Chem 66:177–184. https://doi.org/10.1021/ac00073a029

    Article  CAS  Google Scholar 

  16. Manz A, Effenhauser CS, Burggraf N et al (1994) Electroosmotic pumping and electrophoretic separations for miniaturized chemical analysis systems. J Micromech Microeng 4:257–265. https://doi.org/10.1088/0960-1317/4/4/010

    Article  CAS  Google Scholar 

  17. Raymond DE, Manz A, Widmer HM (1994) Continuous sample pretreatment using a free-flow electrophoresis device integrated onto a silicon chip. Anal Chem 66:2858–2865. https://doi.org/10.1021/ac00090a011

    Article  CAS  Google Scholar 

  18. Xia Y, Whitesides GM (1998) Soft lithography. Angew Chem Int Ed 37:550–575

    Article  CAS  Google Scholar 

  19. Kim E, Xia Y, Whitesides GM (1995) Polymer microstructures formed by moulding in capillaries. Nature 376:581–584. https://doi.org/10.1038/376581a0

    Article  CAS  Google Scholar 

  20. Whitesides GM, Ostuni E, Takayama S et al (2001) Soft lithography in biology and biochemistry. Annu Rev Biomed Eng 3:335–373. https://doi.org/10.1146/annurev.bioeng.3.1.335

    Article  CAS  PubMed  Google Scholar 

  21. Mrksich M, Whitesides GM (1995) Patterning self-assembled monolayers using microcontact printing: a new technology for biosensors? Trends Biotechnol 13:228–235. https://doi.org/10.1016/S0167-7799(00)88950-7

    Article  CAS  Google Scholar 

  22. Zhao X-M, Xia Y, Whitesides GM (1996) Fabrication of three-dimensional micro-structures: microtransfer molding. Adv Mater 8:837–840. https://doi.org/10.1002/adma.19960081016

    Article  CAS  Google Scholar 

  23. Bartholomeusz D, Boutté R, Gale B (2009) Xurography: microfluidic prototyping with a cutting plotter. In: Herold K, Rasooly A (eds) Lab on a chip technology: fabrication and microfluidics. Caister Academic Press, United Kingdom, pp 65–82

    Google Scholar 

  24. Martynova L, Locascio LE, Gaitan M et al (1997) Fabrication of plastic microfluid channels by imprinting methods. Anal Chem 69:4783–4789

    Article  CAS  Google Scholar 

  25. Johnson KS, Berggren KK, Black A et al (1996) Using neutral metastable argon atoms and contamination lithography to form nanostructures in silicon, silicon dioxide, and gold. Appl Phys Lett 69(18):2773–2775

    Article  CAS  Google Scholar 

  26. Lorenz H, Despont M, Fahrni N et al (1997) SU-8: a low-cost negative resist for MEMS. J Micromechanics Microeng 7:121–124. https://doi.org/10.1088/0960-1317/7/3/010

    Article  CAS  Google Scholar 

  27. Gale BK, Eddings MA, Sundberg SO et al (2008) Low-cost MEMS technologies. In: Comprehensive microsystems. Elsevier, Amsterdam, pp 341–378

    Chapter  Google Scholar 

  28. González C, Collins SD, Smith RL (1998) Fluidic interconnects for modular assembly of chemical microsystems. Sensors Actuators B Chem 49:40–45. https://doi.org/10.1016/S0925-4005(98)00035-5

    Article  Google Scholar 

  29. Larsson O, Ohman O, Billman A et al Silicon based replication technology of 3D-microstructures by conventional CD-injection molding techniques. In: Proceedings of international solid state sensors and actuators conference (Transducers ’97). IEEE, New York, pp 1415–1418

    Google Scholar 

  30. Klaassen EH, Petersen K, Noworolski JM et al (1996) Silicon fusion bonding and deep reactive ion etching: a new technology for microstructures. Sensors Actuators A Phys 52:132–139. https://doi.org/10.1016/0924-4247(96)80138-5

    Article  CAS  Google Scholar 

  31. Rivet C, Lee H, Hirsch A et al (2011) Microfluidics for medical diagnostics and biosensors. Chem Eng Sci 66:1490–1507. https://doi.org/10.1016/J.CES.2010.08.015

    Article  CAS  Google Scholar 

  32. Crews N, Wittwer C, Gale B (2008) Continuous-flow thermal gradient PCR. Biomed Microdevices 10:187–195. https://doi.org/10.1007/s10544-007-9124-9

    Article  CAS  PubMed  Google Scholar 

  33. Bartholomeusz DA, Boutte RW, Andrade JD (2005) Xurography: rapid prototyping of microstructures using a cutting plotter. J Microelectromech Syst 14:1364–1374. https://doi.org/10.1109/JMEMS.2005.859087

    Article  Google Scholar 

  34. Klank H, Kutter JP, Geschke O (2002) CO2-laser micromachining and back-end processing for rapid production of PMMA-based microfluidic systems. Lab Chip 2:242. https://doi.org/10.1039/b206409j

    Article  CAS  PubMed  Google Scholar 

  35. Becker H, Gärtner C (2008) Polymer microfabrication technologies for microfluidic systems. Anal Bioanal Chem 390:89–111. https://doi.org/10.1007/s00216-007-1692-2

    Article  CAS  PubMed  Google Scholar 

  36. Martinez AW, Phillips ST, Whitesides GM (2008) Three-dimensional microfluidic devices fabricated in layered paper and tape. Proc Natl Acad Sci U S A 105:19606–19611. https://doi.org/10.1073/pnas.0810903105

    Article  PubMed  PubMed Central  Google Scholar 

  37. Martinez AW, Phillips ST, Whitesides GM, Carrilho E (2010) Diagnostics for the developing world: microfluidic paper-based analytical devices. Anal Chem 82:3–10. https://doi.org/10.1021/ac9013989

    Article  CAS  PubMed  Google Scholar 

  38. Rolland JP, Hagberg EC, Denison GM et al (2004) High-resolution soft lithography: enabling materials for nanotechnologies. Angew Chem Int Ed 43:5796–5799. https://doi.org/10.1002/anie.200461122

    Article  CAS  Google Scholar 

  39. Bhattacharyya A, Klapperich CM (2006) Thermoplastic microfluidic device for on-chip purification of nucleic acids for disposable diagnostics. Anal Chem 78:788–792. https://doi.org/10.1021/ac051449j

    Article  CAS  PubMed  Google Scholar 

  40. Ivnitski D, Abdel-Hamid I, Atanasov P, Wilkins E (1999) Biosensors for detection of pathogenic bacteria. Biosens Bioelectron 14:599–624

    Article  CAS  Google Scholar 

  41. Kim J, Johnson M, Hill P, Gale BK (2009) Microfluidic sample preparation: cell lysis and nucleic acid purification. Integr Biol 1:574. https://doi.org/10.1039/b905844c

    Article  CAS  Google Scholar 

  42. Kim J, Elsnab J, Johnson M, Gale BK (2010) Sample to answer: a fully integrated nucleic acid identification system for bacteria monitoring. In: Becker H, Wang W (eds) Proc. SPIE, vol 7593. International Society for Optics and Photonics, Washington, p 75930S

    Google Scholar 

  43. Sant H, Johnson M, Gale B (2011) Integrated microfluidics for serotype identification of foot and mouth disease virus. In: 15th International conference on miniaturized systems for chemistry and life sciences, Seattle, Washington, USA

    Google Scholar 

  44. Velusamy V, Arshak K, Korostynska O et al (2010) An overview of foodborne pathogen detection: in the perspective of biosensors. Biotechnol Adv 28:232–254. https://doi.org/10.1016/j.biotechadv.2009.12.004

    Article  CAS  PubMed  Google Scholar 

  45. Lazcka O, Del Campo FJ, Muñoz FX (2007) Pathogen detection: a perspective of traditional methods and biosensors. Biosens Bioelectron 22:1205–1217. https://doi.org/10.1016/j.bios.2006.06.036

    Article  CAS  PubMed  Google Scholar 

  46. Xiang Q, Hu G, Gao Y, Li D (2006) Miniaturized immunoassay microfluidic system with electrokinetic control. Biosens Bioelectron 21:2006–2009. https://doi.org/10.1016/j.bios.2005.09.019

    Article  CAS  PubMed  Google Scholar 

  47. Meagher RJ, Hatch AV, Renzi RF, Singh AK (2008) An integrated microfluidic platform for sensitive and rapid detection of biological toxins. Lab Chip 8:2046. https://doi.org/10.1039/b815152k

    Article  CAS  PubMed  Google Scholar 

  48. Gao Y, Sherman PM, Sun Y, Li D (2008) Multiplexed high-throughput electrokinetically-controlled immunoassay for the detection of specific bacterial antibodies in human serum. Anal Chim Acta 606:98–107. https://doi.org/10.1016/j.aca.2007.10.052

    Article  CAS  PubMed  Google Scholar 

  49. Heo J, Hua SZ (2009) An overview of recent strategies in pathogen sensing. Sensors (Basel) 9:4483–4502. https://doi.org/10.3390/s90604483

    Article  CAS  Google Scholar 

  50. Boehm DA, Gottlieb PA, Hua SZ (2007) On-chip microfluidic biosensor for bacterial detection and identification. Sensors Actuators B Chem 126:508–514

    Article  CAS  Google Scholar 

  51. Liao JC, Mastali M, Gau V et al (2006) Use of electrochemical DNA biosensors for rapid molecular identification of uropathogens in clinical urine specimens. J Clin Microbiol 44:561–570. https://doi.org/10.1128/JCM.44.2.561-570.2006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Stevens DY, Petri CR, Osborn JL et al (2008) Enabling a microfluidic immunoassay for the developing world by integration of on-card dry reagent storage. Lab Chip 8:2038. https://doi.org/10.1039/b811158h

    Article  CAS  PubMed  Google Scholar 

  53. Cheng X, Chen G, Rodriguez WR (2009) Micro- and nanotechnology for viral detection. Anal Bioanal Chem 393:487–501. https://doi.org/10.1007/s00216-008-2514-x

    Article  CAS  PubMed  Google Scholar 

  54. Sharma H, Nguyen D, Chen A et al (2011) Unconventional low-cost fabrication and patterning techniques for point of care diagnostics. Ann Biomed Eng 39:1313–1327. https://doi.org/10.1007/s10439-010-0213-1

    Article  PubMed  Google Scholar 

  55. Gudipaty T, Stamm MT, Cheung LSL et al (2011) Cluster formation and growth in microchannel flow of dilute particle suspensions. Microfluid Nanofluidics 10:661–669. https://doi.org/10.1007/s10404-010-0700-6

    Article  Google Scholar 

  56. Perry-O’Keefe H, Rigby S, Oliveira K et al (2001) Identification of indicator microorganisms using a standardized PNA FISH method. J Microbiol Methods 47:281–292. https://doi.org/10.1016/S0167-7012(01)00303-7

    Article  PubMed  Google Scholar 

  57. Ferreira AM, Cruz-Moreira D, Cerqueira L et al (2017) Yeasts identification in microfluidic devices using peptide nucleic acid fluorescence in situ hybridization (PNA-FISH). Biomed Microdevices 19:11. https://doi.org/10.1007/s10544-017-0150-y

    Article  CAS  PubMed  Google Scholar 

  58. Leonard BP (1979) A stable and accurate convective modelling procedure based on quadratic upstream interpolation. Comput Methods Appl Mech Eng 19:59–98. https://doi.org/10.1016/0045-7825(79)90034-3

    Article  Google Scholar 

  59. Patankar SV (2018) Numerical heat transfer and fluid flow. CRC Press, Boca Raton

    Book  Google Scholar 

  60. ANSYS® Fluent, Release 12.0, getting started guide (ANSYS Inc., Canonsburg, 2009)

    Google Scholar 

  61. Anderson JR, Chiu DT, Jackman RJ et al (2000) Fabrication of topologically complex three-dimensional microfluidic systems in PDMS by rapid prototyping. Anal Chem 72:3158–3164. https://doi.org/10.1021/AC9912294

    Article  CAS  PubMed  Google Scholar 

  62. Owen MJ, Smith PJ (1994) Plasma treatment of polydimethylsiloxane. J Adhes Sci Technol 8:1063–1075. https://doi.org/10.1163/156856194X00942

    Article  CAS  Google Scholar 

  63. Bhattacharya S, Datta A, Berg JM, Gangopadhyay S (2005) Studies on surface wettability of poly(dimethyl) siloxane (PDMS) and glass under oxygen-plasma treatment and correlation with bond strength. J Microelectromech Syst 14:590–597. https://doi.org/10.1109/JMEMS.2005.844746

    Article  CAS  Google Scholar 

  64. Hillborg H, Ankner JF, Gedde UW et al (2000) Crosslinked polydimethylsiloxane exposed to oxygen plasma studied by neutron reflectometry and other surface specific techniques. Polymer (Guildf) 41:6851–6863. https://doi.org/10.1016/S0032-3861(00)00039-2

    Article  CAS  Google Scholar 

  65. Tan SH, Nguyen N-T, Chua YC, Kang TG (2010) Oxygen plasma treatment for reducing hydrophobicity of a sealed polydimethylsiloxane microchannel. Biomicrofluidics 4:032204. https://doi.org/10.1063/1.3466882

    Article  CAS  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was financially supported by: (1) Base Funding—UIDB/00511/2020 of the Laboratory for Process Engineering, Environment, Biotechnology and Energy—LEPABE—funded by national funds through the FCT/MCTES (PIDDAC); (2) Projects POCI-01-0145-FEDER-031011 (μFISH) and POCI-01-0145-FEDER-029961 (ColorISH), funded by FEDER funds through COMPETE2020—Programa Operacional Competitividade e Internacionalização (POCI) and by national funds (PIDDAC) through FCT/MCTES; and (3) BioTecNorte operation (NORTE-01-0145-FEDER-000004) funded by the European Regional Development Fund under the scope of Norte2020—Programa Operacional Regional do Norte.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to João M. Miranda .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Rodrigues, C.F., Azevedo, N.F., Miranda, J.M. (2021). Integration of FISH and Microfluidics. In: Azevedo, N.F., Almeida, C. (eds) Fluorescence In-Situ Hybridization (FISH) for Microbial Cells. Methods in Molecular Biology, vol 2246. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1115-9_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1115-9_16

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1114-2

  • Online ISBN: 978-1-0716-1115-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics