Skip to main content

Rapid Vector Construction and Assessment of BE3 and Target-AID C to T Base Editing Systems in Rice Protoplasts

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2238))

Abstract

CRISPR-Cas9 has revolutionized the field of genome engineering. Base editing, a new genome editing strategy, was recently developed to engineer nucleotide substitutions. DNA base editing systems use a catalytically impared Cas nuclease together with a nucleobase deaminase enzyme to specifically introduce point mutations without generating double-stranded breaks, which provide huge potential in crop improvement. Here, we describe fast and efficient preparation of user-friendly C to T base editors, BE3, and Target-AID. Presented are detailed protocols for T-DNA vector preparation with BE3 or modified Target-AID base editor based on Gateway assembly and efficiency assessment of base editing through a rice protoplast transient expression system.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Kim YG, Cha J, Chandrasegaran S (1996) Hybrid restriction enzymes: zinc finger fusions to Fok I cleavage domain. Proc Natl Acad Sci U S A 93(3):1156–1160

    Article  CAS  Google Scholar 

  2. Christian M et al (2010) Targeting DNA double-strand breaks with TAL effector nucleases. Genetics 186(2):757–761

    Article  CAS  Google Scholar 

  3. Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna JA, Charpentier E (2012) A programmable dual-RNA–guided DNA endonuclease in adaptive bacterial immunity. Science 337(6096):816–821

    Article  CAS  Google Scholar 

  4. Garneau JE et al (2010) The CRISPR/Cas bacterial immune system cleaves bacteriophage and plasmid DNA. Nature 468(7320):67–71

    Article  CAS  Google Scholar 

  5. Jansen R, van Embden JDA, Gaastra W, Schouls LM (2002) Identification of genes that are associated with DNA repeats in prokaryotes. Mol Microbiol 43(6):1565–1575

    Article  CAS  Google Scholar 

  6. Lees-Miller SP, Meek K (2003) Repair of DNA double strand breaks by non-homologous end joining. Biochimie 85(11):1161–1173

    Article  CAS  Google Scholar 

  7. Sfeir A, Symington LS (2015) Microhomology-mediated end joining: a back-up survival mechanism or dedicated pathway? Trends Biochem Sci 40(11):701–714

    Article  CAS  Google Scholar 

  8. Liang F, Han M, Romanienko PJ, Jasin M (1998) Homology-directed repair is a major double-strand break repair pathway in mammalian cells. Proc Natl Acad Sci U S A 95(9):5172–5177

    Article  CAS  Google Scholar 

  9. Jeggo PA (1998) DNA breakage and repair. Adv Genet 38:185–218

    Article  CAS  Google Scholar 

  10. Kosicki M, Tomberg K, Bradley A (2018) Repair of double-strand breaks induced by CRISPR–Cas9 leads to large deletions and complex rearrangements. Nat Biotechnol 36(8):765–771

    Article  CAS  Google Scholar 

  11. Komor AC, Kim YB, Packer MS, Zuris JA, Liu DR (2016) Programmable editing of a target base in genomic DNA without double-stranded DNA cleavage. Nature 533(7603):420–424

    Article  CAS  Google Scholar 

  12. Nishida K et al (2016) Targeted nucleotide editing using hybrid prokaryotic and vertebrate adaptive immune systems. Science 353(6305):aaf8729

    Article  Google Scholar 

  13. Gaudelli NM et al (2017) Programmable base editing of A•T to G•C in genomic DNA without DNA cleavage. Nature 551(7681):464

    Article  CAS  Google Scholar 

  14. Harris RS, Petersen-Mahrt SK, Neuberger MS (2002) RNA editing enzyme APOBEC1 and some of its homologs can act as DNA mutators. Mol Cell 10(5):1247–1253

    Article  CAS  Google Scholar 

  15. Conticello SG (2008) The AID/APOBEC family of nucleic acid mutators. Genome Biol 9(6):229

    Article  Google Scholar 

  16. Hua K, Tao X, Zhu J-K (2018) Expanding the base editing scope in rice by using Cas9 variants. Plant Biotechnol J 17(2):499–504

    Article  Google Scholar 

  17. Li J, Sun Y, Du J, Zhao Y, Xia L (2017) Generation of targeted point mutations in rice by a modified CRISPR/Cas9 system. Mol Plant 10(3):526–529

    Article  CAS  Google Scholar 

  18. Lu Y, Zhu J-K (2017) Precise editing of a target base in the rice genome using a modified CRISPR/Cas9 system. Mol Plant 10(3):523–525

    Article  CAS  Google Scholar 

  19. Ren B et al (2017) A CRISPR/Cas9 toolkit for efficient targeted base editing to induce genetic variations in rice. Sci China Life Sci 60(5):516–519

    Article  Google Scholar 

  20. Zong Y et al (2017) Precise base editing in rice, wheat and maize with a Cas9-cytidine deaminase fusion. Nat Biotechnol 35(5):438–440

    Article  CAS  Google Scholar 

  21. Shimatani Z et al (2017) Targeted base editing in rice and tomato using a CRISPR-Cas9 cytidine deaminase fusion. Nat Biotechnol 35(5):441–443

    Article  CAS  Google Scholar 

  22. Eid A, Alshareef S, Mahfouz MM (2018) CRISPR base editors: genome editing without double-stranded breaks. Biochem J 475(11):1955–1964

    Article  CAS  Google Scholar 

  23. Zhong Z et al (2019) Improving plant genome editing with high-fidelity xCas9 and non-canonical PAM-targeting Cas9-NG. Mol Plant. https://doi.org/10.1016/j.molp.2019.03.011

  24. Tang X et al (2018) Single transcript unit CRISPR 2.0 systems for robust Cas9 and Cas12a mediated plant genome editing. Plant Biotechnol J. https://doi.org/10.1111/pbi.13068

  25. Liu H, Ding Y, Zhou Y, Jin W, Xie K, Chen L-L (2017) CRISPR-P 2.0: an improved CRISPR-Cas9 tool for genome editing in plants. Mol Plant 10(3):530–532

    Article  CAS  Google Scholar 

  26. Naito Y, Hino K, Bono H, Ui-Tei K (2015) CRISPRdirect: software for designing CRISPR/Cas guide RNA with reduced off-target sites. Bioinformatics 31(7):1120–1123

    Article  CAS  Google Scholar 

  27. Murray MG, Thompson WF (1980) Rapid isolation of high molecular weight plant DNA. Nucleic Acids Res 8(19):4321–4325

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by grants to Y.Q. from NSF (IOS-1758745), USDA-NIFA (2018-33522-28789), FFAR (593603), and Syngenta Biotechnology and by grants to Y.Z. from the Sichuan Youth Science and Technology Foundation (2017JQ0005), the National Science Foundation of China (31771486), the National Transgenic Major Project (2018ZX08022001-003), and the Fundamental Research Funds for the Central Universities (ZYGX2016J119 and ZYGX2016J122).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yiping Qi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Sretenovic, S., Pan, C., Tang, X., Zhang, Y., Qi, Y. (2021). Rapid Vector Construction and Assessment of BE3 and Target-AID C to T Base Editing Systems in Rice Protoplasts. In: Bandyopadhyay, A., Thilmony, R. (eds) Rice Genome Engineering and Gene Editing. Methods in Molecular Biology, vol 2238. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1068-8_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1068-8_7

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1067-1

  • Online ISBN: 978-1-0716-1068-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics