Skip to main content
Book cover

Pericytes pp 61–87Cite as

Pericyte Ontogeny: The Use of Chimeras to Track a Cell Lineage of Diverse Germ Line Origins

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2235))

Abstract

The goal of lineage tracing is to understand body formation over time by discovering which cells are the progeny of a specific, identified, ancestral progenitor. Subsidiary questions include unequivocal identification of what they have become, how many descendants develop, whether they live or die, and where they are located in the tissue or body at the end of the window examined. A classical approach in experimental embryology, lineage tracing continues to be used in developmental biology and stem cell and cancer research, wherever cellular potential and behavior need to be studied in multiple dimensions, of which one is time. Each technical approach has its advantages and drawbacks. This chapter, with some previously unpublished data, will concentrate nonexclusively on the use of interspecies chimeras to explore the origins of perivascular (or mural) cells, of which those adjacent to the vascular endothelium are termed pericytes for this purpose. These studies laid the groundwork for our understanding that pericytes derive from progenitor mesenchymal pools of multiple origins in the vertebrate embryo, some of which persist into adulthood. The results obtained through xenografting, like in the methodology described here, complement those obtained through genetic lineage-tracing techniques within a given species.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Rouget C (1873) Mémoire sur le dévéloppement, la structure et les proprieties physiologiques des capillaires sanguins et lymphatiques. Arch Physiol Norm Path 5:603–672

    Google Scholar 

  2. Doherty MJ, Canfield AE (1999) Gene expression during vascular pericyte differentiation. Crit Rev Eukaryot Gene Expr 9:1–17

    Article  CAS  PubMed  Google Scholar 

  3. Saint-Geniez M, D’Amore PA (2004) Development and pathology of the hyaloid, choroidal and retinal vasculature. Int J Dev Biol 48:1045–1058. https://doi.org/10.1387/ijdb.041895ms

    Article  PubMed  Google Scholar 

  4. Guillemin GJ, Brew BJ (2004) Microglia, macrophages, perivascular macrophages, and pericytes: a review of function and identification. J Leukoc Biol 75:388–397. https://doi.org/10.1189/jlb.0303114

    Article  CAS  PubMed  Google Scholar 

  5. Thomas WE (1999) Brain macrophages: on the role of pericytes and perivascular cells. Brain Res Brain Res Rev 31:42–57

    Article  CAS  PubMed  Google Scholar 

  6. Armulik A, Genové G, Betsholtz C (2011) Pericytes: developmental, physiological, and pathological perspectives, problems, and promises. Dev Cell 21:193–215. https://doi.org/10.1016/j.devcel.2011.07.001

    Article  CAS  PubMed  Google Scholar 

  7. Lund TC, Patrinostro X, Kramer AC et al (2014) sdf1 expression reveals a source of perivascular-derived mesenchymal stem cells in zebrafish. Stem Cells 32:2767–2779. https://doi.org/10.1002/stem.1758

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. He L, Vanlandewijck M, Raschperger E et al (2016) Analysis of the brain mural cell transcriptome. Sci Rep 6:35108. https://doi.org/10.1038/srep35108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Kretzschmar K, Watt FM (2012) Lineage tracing. Cell 148:33–45. https://doi.org/10.1016/j.cell.2012.01.002

    Article  CAS  PubMed  Google Scholar 

  10. Le Douarin N (1969) Particularités du noyau interphasique chez la Caille japonaise (Coturnix coturnix japonica). Utilisation de ces particularités comme “marquage biologique” dans les recherches sur les interactions tissulaires et les migrations cellulaires au cours de l’ont. Bull Biol Fr Belg 103:435–452

    PubMed  Google Scholar 

  11. Le Douarin N, Dieterlen-Lievre F, Creuzet S, Teillet M-A (2008) Quail—Chick transplantations. Methods Cell Biol 87:19–58. https://doi.org/10.1016/S0091-679X(08)00202-1

    Article  CAS  PubMed  Google Scholar 

  12. Schneider RA, Helms JA (2003) The cellular and molecular origins of beak morphology. Science 299:565–568

    Article  CAS  PubMed  Google Scholar 

  13. Fontaine-Perus J, Jarno V, Fournier le Ray C et al (1995) Mouse chick chimera: a new model to study the in ovo developmental potentialities of mammalian somites. Development 121:1705–1718

    Article  CAS  PubMed  Google Scholar 

  14. Le Douarin NM, Couly G, Creuzet SE (2012) The neural crest is a powerful regulator of pre-otic brain development. Dev Biol 366(1):74–82. https://doi.org/10.1016/j.ydbio.2012.01.007

    Article  CAS  PubMed  Google Scholar 

  15. Eichmann A, Marcelle C, Breant C, Le Douarin NM (1993) Two molecules related to the VEGF receptor are expressed in early endothelial cells during avian embryonic development. Mech Dev 42:33–48

    Article  CAS  PubMed  Google Scholar 

  16. Darland DC, Massingham LJ, Smith SR et al (2003) Pericyte production of cell-associated VEGF is differentiation- dependent and is associated with endothelial survival. Dev Biol 264:275–288. https://doi.org/10.1016/S0012-1606(03)00492-5

    Article  CAS  PubMed  Google Scholar 

  17. Benjamin LE, Golijanin D, Itin A et al (1999) Selective ablation of immature blood vessels in established human tumors follows vascular endothelial growth factor withdrawal. J Clin Invest 103:159–165

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Greenberg JI, Shields DJ, Barillas SG et al (2008) A role for VEGF as a negative regulator of pericyte function and vessel maturation. Nature 456:809–813

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Couly GF, Coltey PM, Le Douarin NM (1992) The developmental fate of the cephalic mesoderm in quail-chick chimeras. Development 114:1–15

    Article  CAS  PubMed  Google Scholar 

  20. Couly G, Coltey P, Eichmann A, Le Douarin NM (1995) The angiogenic potentials of the cephalic mesoderm and the origin of brain and head blood vessels. Mech Dev 53:97–112

    Article  CAS  PubMed  Google Scholar 

  21. Benjamin LE, Hemo I, Keshet E (1998) A plasticity window for blood vessel remodelling is defined by pericyte coverage of the preformed endothelial network and is regulated by PDGF-B and VEGF. Cell 1598:1591–1598

    Google Scholar 

  22. Péault B, Thiery J-P, Le Douarin NM (1983) A surface marker for the hemopoietic and endothelial cell lineages in the quail species defined by a monoclonal antibody. Proc Natl Acad Sci U S A 80:2976–2980

    Article  PubMed  PubMed Central  Google Scholar 

  23. Pardanaud L, Altmann C, Kitos P et al (1987) Vasculogenesis in the early quail blastodisc as studied with a monoclonal antibody recognizing endothelial cells. Development 100:339–349

    Article  CAS  PubMed  Google Scholar 

  24. Othman-Hassan K, Patel K, Papoutsi M et al (2001) Arterial identity of endothelial cells is controlled by local cues. Dev Biol 237:398–409. https://doi.org/10.1006/dbio.2001.0383

    Article  CAS  PubMed  Google Scholar 

  25. Hatzopoulos AK, Folkman J, Vasile E et al (1998) Isolation and characterization of endothelial progenitor cells from mouse embryos. Development 125:1457–1468

    Article  CAS  PubMed  Google Scholar 

  26. Jiang X, Rowitch DH, Soriano P et al (2000) Fate of the mammalian cardiac neural crest. Development 127:1607–1616

    Article  CAS  PubMed  Google Scholar 

  27. Yokota Y, Saito D, Tadokoro R, Takahashi Y (2011) Genomically integrated transgenes are stably and conditionally expressed in neural crest cell-specific lineages. Dev Biol 353:382–395. https://doi.org/10.1016/j.ydbio.2011.02.001

    Article  CAS  PubMed  Google Scholar 

  28. Sato Y, Sato Y, Kasai T et al (2007) Stable integration and conditional expression of electroporated transgenes in chicken embryos. Dev Biol 305:616–624. https://doi.org/10.1016/j.ydbio.2007.01.043

    Article  CAS  PubMed  Google Scholar 

  29. Lopes M, Goupille O, Saint Cloment C et al (2011) Msx genes define a population of mural cell precursors required for head blood vessel maturation. Development 138:3055–3066. https://doi.org/10.1242/dev.063214

    Article  CAS  PubMed  Google Scholar 

  30. Kisanuki YY, Hammer RE, Miyazaki J et al (2001) Tie2-Cre transgenic mice: a new model for endothelial cell-lineage analysis in vivo. Dev Biol 230:230–242. https://doi.org/10.1006/dbio.2000.0106

    Article  CAS  PubMed  Google Scholar 

  31. Fouquet B, Weinstein BM, Serluca FC, Fishman MC (1997) Vessel patterning in the embryo of the zebrafish: guidance by notochord. Dev Biol 183:37–48

    Article  CAS  PubMed  Google Scholar 

  32. Lawson ND, Vogel AM, Weinstein BM (2002) Sonic hedgehog and vascular endothelial growth factor act upstream of the notch pathway during arterial endothelial differentiation. Dev Cell 3:127–136

    Article  CAS  PubMed  Google Scholar 

  33. Dufourcq P, Couffinhal T, Ezan J et al (2002) FrzA, a secreted frizzled related protein, induced Angiogenic response. Circulation 106:3097–3103. https://doi.org/10.1161/01.CIR.0000039342.85015.5C

    Article  PubMed  Google Scholar 

  34. Pearse AG, Polak JM, Rost FW et al (1973) Demonstration of the neural crest origin of type I (APUD) cells in the avian carotid body, using a cytochemical marker system. Histochemie 34:191–203

    Article  CAS  PubMed  Google Scholar 

  35. Le Lièvre CS, Le Douarin NM (1975) Mesenchymal derivatives of the neural crest: analysis of chimaeric quail and chick embryos. J Embryol Exp Morphol 34:125–154

    PubMed  Google Scholar 

  36. Polak JM, Pearse AG, Le Lievre C et al (1974) Immunocytochemical confirmation of the neural crest origin of avian calcitonin-producing cells. Histochemistry 40:209–214

    Article  CAS  PubMed  Google Scholar 

  37. Le Douarin N, Fontaine J, Le Lievre C (1974) New studies on the neural crest origin of the avian ultimobranchial glandular cells--interspecific combinations and cytochemical characterization of C cells based on the uptake of biogenic amine precursors. Histochemistry 38:297–305

    Article  PubMed  Google Scholar 

  38. Johnston MC, Noden DM, Hazelton RD et al (1979) Origins of avian ocular and periocular tissues. Exp Eye Res 29:27–43. https://doi.org/10.1016/0014-4835(79)90164-7

    Article  CAS  PubMed  Google Scholar 

  39. Noden DM (1983) The role of the neural crest in patterning of avian cranial skeletal, connective, and muscle tissues. Dev Biol 96:144–165

    Article  CAS  PubMed  Google Scholar 

  40. Couly GF, Coltey PM, Le Douarin NM (1993) The triple origin of skull in higher vertebrates: a study in quail-chick chimeras. Development 117:409–429

    Article  CAS  PubMed  Google Scholar 

  41. Couly G, Grapin-Botton A, Coltey P, Le Douarin NM (1996) The regeneration of the cephalic neural crest, a problem revisited: the regenerating cells originate from the contralateral or from the anterior and posterior neural fold. Development 122:3393–3407

    Article  CAS  PubMed  Google Scholar 

  42. Köntges G, Lumsden A (1996) Rhombencephalic neural crest segmentation is preserved throughout craniofacial ontogeny. Development 122:3229–3242

    Article  PubMed  Google Scholar 

  43. Etchevers HC, Couly G, Vincent C, Le Douarin NM (1999) Anterior cephalic neural crest is required for forebrain viability. Development 126:3533–3543

    Article  CAS  PubMed  Google Scholar 

  44. Creuzet SE (2009) Regulation of pre-otic brain development by the cephalic neural crest. Proc Natl Acad Sci U S A 106:15774–15779. https://doi.org/10.1073/pnas.0906072106

    Article  PubMed  PubMed Central  Google Scholar 

  45. Nolan K, Thompson TB (2014) The DAN family: modulators of TGF-B signaling and beyond. Protein Sci 23:999–1012. https://doi.org/10.1002/pro.2485

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Aguiar DP, Sghari S, Creuzet S (2014) The facial neural crest controls fore- and midbrain patterning by regulating Foxg1 expression through Smad1 activity. Development 141:2494–2505. https://doi.org/10.1242/dev.101790

    Article  CAS  PubMed  Google Scholar 

  47. Creuzet S, Schuler B, Couly G, Le Douarin NM (2004) Reciprocal relationships between Fgf8 and neural crest cells in facial and forebrain development. Proc Natl Acad Sci U S A 101:4843–4847. https://doi.org/10.1073/pnas.0400869101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Johnston MC (1966) A radioautographic study of the migration and fate of cranial neural crest cells in the chick embryo. Anat Rec 156:143–155. https://doi.org/10.1002/ar.1091560204

    Article  CAS  PubMed  Google Scholar 

  49. Bergwerff M, Verberne ME, DeRuiter MC et al (1998) Neural crest cell contribution to the developing circulatory system: implications for vascular morphology? Circ Res 82:221–231

    Article  CAS  PubMed  Google Scholar 

  50. Nishibatake M, Kirby ML, Van Mierop LH (1987) Pathogenesis of persistent truncus arteriosus and dextroposed aorta in the chick embryo after neural crest ablation. Circulation 75:255–264

    Article  CAS  PubMed  Google Scholar 

  51. Waldo K, Miyagawa-Tomita S, Kumiski D, Kirby ML (1998) Cardiac neural crest cells provide new insight into septation of the cardiac outflow tract: aortic sac to ventricular septal closure. Dev Biol 196:129–144

    Article  CAS  PubMed  Google Scholar 

  52. Etchevers HC, Vincent C, Le Douarin NM, Couly GF (2001) The cephalic neural crest provides pericytes and smooth muscle cells to all blood vessels of the face and forebrain. Development 128:1059–1068

    Article  CAS  PubMed  Google Scholar 

  53. Yablonka-Reuveni Z, Schwartz SM, Christ B (1995) Development of chicken aortic smooth muscle: expression of cytoskeletal and basement membrane proteins defines two distinct cell phenotypes emerging from a common lineage. Cell Mol Biol Res 41:241–249

    CAS  PubMed  Google Scholar 

  54. Yablonka-Reuveni Z, Christ B, Benson JM (1998) Transitions in cell organization and in expression of contractile and extracellular matrix proteins during development of chicken aortic smooth muscle: evidence for a complex spatial and temporal differentiation program. Anat Embryol (Berl) 197:421–437

    Article  CAS  Google Scholar 

  55. Yajima I, Colombo S, Puig I et al (2013) A subpopulation of smooth muscle cells, derived from melanocyte-competent precursors, prevents patent ductus arteriosus. PLoS One 8:e53183. https://doi.org/10.1371/journal.pone.0053183

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Gittenberger-de Groot AC, Vrancken Peeters MP, Mentink MM et al (1998) Epicardium-derived cells contribute a novel population to the myocardial wall and the atrioventricular cushions. Circ Res 82:1043–1052. https://doi.org/10.1161/01.RES.82.10.1043

    Article  CAS  PubMed  Google Scholar 

  57. Ando K, Fukuhara S, Izumi N et al (2016) Clarification of mural cell coverage of vascular endothelial cells by live imaging of zebrafish. Development 143:1328–1339. https://doi.org/10.1242/dev.132654

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Wang Y, Pan L, Moens CB, Appel B (2014) Notch3 establishes brain vascular integrity by regulating pericyte number. Development 141:307–317. https://doi.org/10.1242/dev.096107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Delalande J-M, Thapar N, Burns AJ (2015) Dual labeling of neural crest cells and blood vessels within chicken embryos using Chick(GFP) neural tube grafting and carbocyanine dye DiI injection. J Vis Exp 99:e52514. https://doi.org/10.3791/52514

    Article  CAS  Google Scholar 

  60. Mikawa T, Gourdie RG (1996) Pericardial mesoderm generates a population of coronary smooth muscle cells migrating into the heart along with ingrowth of the epicardial organ. Dev Biol 174:221–232. https://doi.org/10.1006/dbio.1996.0068

    Article  CAS  PubMed  Google Scholar 

  61. Dettman RW, Denetclaw W, Ordahl CP, Bristow J (1998) Common epicardial origin of coronary vascular smooth muscle, perivascular fibroblasts, and intermyocardial fibroblasts in the avian heart. Dev Biol 193:169–181. https://doi.org/10.1006/dbio.1997.8801

    Article  CAS  PubMed  Google Scholar 

  62. Volz KS, Jacobs AH, Chen HI et al (2015) Pericytes are progenitors for coronary artery smooth muscle. Elife 4:7250–7257. https://doi.org/10.7554/eLife.10036

    Article  Google Scholar 

  63. Arima Y, Miyagawa-Tomita S, Maeda K et al (2012) Preotic neural crest cells contribute to coronary artery smooth muscle involving endothelin signalling. Nat Commun 3:1267. https://doi.org/10.1038/ncomms2258

    Article  CAS  PubMed  Google Scholar 

  64. van den Berg G, Abu-Issa R, de Boer BA et al (2009) A caudal proliferating growth center contributes to both poles of the forming heart tube. Circ Res 104:179–188. https://doi.org/10.1161/CIRCRESAHA.108.185843

    Article  CAS  PubMed  Google Scholar 

  65. Laforest B, Bertrand N, Zaffran S (2014) Anterior Hox genes in cardiac development and great artery patterning. J Cardiovasc Dev Dis 1:3–13. https://doi.org/10.3390/jcdd1010003

    Article  Google Scholar 

  66. Schlueter J, Brand T (2013) Subpopulation of proepicardial cells is derived from the somatic mesoderm in the chick embryo. Circ Res 113:1128–1137. https://doi.org/10.1161/CIRCRESAHA.113.301347

    Article  CAS  PubMed  Google Scholar 

  67. Peng T, Tian Y, Boogerd CJ et al (2013) Coordination of heart and lung co-development by a multipotent cardiopulmonary progenitor. Nature 4:3–7. https://doi.org/10.1038/nature12358

    Article  CAS  Google Scholar 

  68. Wilm B, Ipenberg A, Hastie ND et al (2005) The serosal mesothelium is a major source of smooth muscle cells of the gut vasculature. Development 132:5317–5328. https://doi.org/10.1242/dev.02141

    Article  CAS  PubMed  Google Scholar 

  69. Pouget C, Pottin K, Jaffredo T et al (2008) Sclerotomal origin of vascular smooth muscle cells and pericytes in the embryo. Dev Biol 315:437–447. https://doi.org/10.1016/j.ydbio.2007.12.045

    Article  CAS  PubMed  Google Scholar 

  70. Wiegreffe C, Christ B, Huang R, Scaal M (2009) Remodeling of aortic smooth muscle during avian embryonic development. Dev Dyn 238:624–631

    Article  PubMed  Google Scholar 

  71. Humphreys BD, Lin S-L, Kobayashi A et al (2010) Fate tracing reveals the pericyte and not epithelial origin of myofibroblasts in kidney fibrosis. Am J Pathol 176:85–97. https://doi.org/10.2353/ajpath.2010.090517

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Kurz H, Fehr J, Nitschke R, Burkhardt H (2008) Pericytes in the mature chorioallantoic membrane capillary plexus contain desmin and α-smooth muscle actin: relevance for non-sprouting angiogenesis. Histochem Cell Biol 130:1027–1040. https://doi.org/10.1007/s00418-008-0478-8

    Article  CAS  PubMed  Google Scholar 

  73. Hamburger V, Hamilton HL (1992) A series of normal stages in the development of the chick embryo. 1951. Dev Dyn 195:231–272. https://doi.org/10.1002/aja.1001950404

    Article  CAS  PubMed  Google Scholar 

  74. Conrad GW, Bee JA, Roche SM, Teillet MA (1993) Fabrication of microscalpels by electrolysis of tungsten wire in a meniscus. J Neurosci Methods 50:123–127. https://doi.org/10.1016/0165-0270(93)90062-V

    Article  CAS  PubMed  Google Scholar 

  75. Poelmann RE, Gittenberger-de Groot AC (1999) A subpopulation of apoptosis-prone cardiac neural crest cells targets to the venous pole: multiple functions in heart development? Dev Biol 207:271–286

    Article  CAS  PubMed  Google Scholar 

  76. Hildreth V, Webb S, Bradshaw L et al (2008) Cells migrating from the neural crest contribute to the innervation of the venous pole of the heart. J Anat 212:1–11. https://doi.org/10.1111/j.1469-7580.2007.00833.x

    Article  PubMed  PubMed Central  Google Scholar 

  77. Etchevers HC, Vincent C, Couly G (2001) Neural crest and pituitary development. In: Rappaport R, Amselem S (eds) Hypothal. Dev. Genet. Clin. Asp. Karger Publishers, Basel, pp 13–29

    Google Scholar 

  78. Teillet M-A, Ziller C, Le Douarin NM (1995) Quail-Chick Chimeras. In: Sharpe PT, Mason I (eds) Methods Mol. Biol. vol. 97 Mol. Embryol. Methods Protoc., 1st edn. Humana Press, Totowa, NJ, pp 305–318

    Google Scholar 

  79. Buesa RJ, Peshkov MV (2009) Histology without xylene. Ann Diagn Pathol 13:246–256. https://doi.org/10.1016/j.anndiagpath.2008.12.005

    Article  PubMed  Google Scholar 

  80. Skalli O, Ropraz P, Trzeciak A et al (1986) A monoclonal antibody against alpha-smooth muscle actin: a new probe for smooth muscle differentiation. J Cell Biol 103:2787–2796. https://doi.org/10.1083/jcb.103.6.2787

    Article  CAS  PubMed  Google Scholar 

  81. Fish JL, Schneider RA (2014) Assessing species-specific contributions to craniofacial development using quail-duck chimeras. J Vis Exp 87:51534. https://doi.org/10.3791/51534

    Article  Google Scholar 

  82. Lunn G, Sansone EB (1990) Destruction of hazardous chemicals in the laboratory. Wiley, New York, 1990; pp 1-271

    Google Scholar 

  83. Etchevers H (2003) Vasculo-and angio-genesis in the head and neck. Riv Neuroradiol 16:735–738

    Article  Google Scholar 

  84. Liu W, Morito D, Takashima S et al (2011) Identification of RNF213 as a susceptibility gene for moyamoya disease and its possible role in vascular development. PLoS One 6(7):e22542. https://doi.org/10.1371/journal.pone.0022542

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Zhou S, Ambalavanan A, Rochefort D et al (2016) RNF213 is associated with intracranial aneurysms in the French-Canadian population. Am J Hum Genet 99(5):1072–1085. https://doi.org/10.1016/j.ajhg.2016.09.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Krylyshkina O, Chen J, Mebis L et al (2005) Nestin-immunoreactive cells in rat pituitary are neither hormonal nor typical folliculo-stellate cells. Endocrinology 146:2376–2387. https://doi.org/10.1210/en.2004-1209

    Article  CAS  PubMed  Google Scholar 

  87. Fujiwara K, Jindatip D, Kikuchi M (2010) In situ hybridization reveals that type I and III collagens are produced by pericytes in the anterior pituitary gland of rats. Cell Tissue Res 342(3):491–495. https://doi.org/10.1007/s00441-010-1078-1

    Article  CAS  PubMed  Google Scholar 

  88. Ueharu H, Yoshida S, Kikkawa T et al (2017) Gene tracing analysis reveals the contribution of neural crest-derived cells in pituitary development. J Anat 230:373–380. https://doi.org/10.1111/joa.12572

    Article  CAS  PubMed  Google Scholar 

  89. Bockman DE, Kirby ML (1984) Dependence of thymus development on derivatives of the neural crest. Science 223:498–500

    Article  CAS  PubMed  Google Scholar 

  90. Müller SM, Stolt CC, Terszowski G et al (2008) Neural crest origin of perivascular mesenchyme in the adult thymus. J Immunol 180:5344–5351

    Article  PubMed  Google Scholar 

  91. Zachariah MA, Cyster JG (2010) Neural crest-derived Pericytes promote egress of mature Thymocytes at the Corticomedullary junction. Science 328:1129–1135. https://doi.org/10.1126/science.1188222

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Hutson MR, Kirby ML (2003) Neural crest and cardiovascular development: a 20-year perspective. Birth Defects Res C Embryo Today 69:2–13

    Article  CAS  PubMed  Google Scholar 

  93. Fetissov SO, Barcza MA, Meguid MM, Oler A (1999) Hypophysial and meningeal melanocytes in the Zucker rat. Pigment Cell Res 12:323–330

    Article  CAS  PubMed  Google Scholar 

  94. Gudjohnsen SAH, Atacho DAM, Gesbert F et al (2015) Meningeal melanocytes in the mouse: distribution and dependence on Mitf. Front Neuroanat 9:149. https://doi.org/10.3389/fnana.2015.00149

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Real C, Glavieux-Pardanaud C, Le Douarin NM, Dupin E (2006) Clonally cultured differentiated pigment cells can dedifferentiate and generate multipotent progenitors with self-renewing potential. Dev Biol 300:656–669. https://doi.org/10.1016/j.ydbio.2006.09.032

    Article  CAS  PubMed  Google Scholar 

  96. Brito FC, Kos L (2008) Timeline and distribution of melanocyte precursors in the mouse heart. Pigment Cell Melanoma Res 21:464–470. https://doi.org/10.1111/j.1755-148X.2008.00459.x

    Article  CAS  PubMed  Google Scholar 

  97. Reyes-Múgica M, Beckwith M, Etchevers HC (2012) Etiology of congenital melanocytic nevi and related conditions. In: Marghoob AA (ed) Nevogenes. (Practical Clin. Med. Ser.). Springer Berlin Heidelberg, Berlin, Heidelberg, pp 73–97

    Google Scholar 

  98. Reyes-Mugica M, Chou P, Byrd S et al (1993) Nevomelanocytic proliferations in the central nervous system of children. Cancer 72:2277–2285

    Article  CAS  PubMed  Google Scholar 

  99. Makin GWJ, Eden OB, Lashford LS et al (1999) Leptomeningeal melanoma in childhood. Cancer 86:878–886. https://doi.org/10.1002/(SICI)1097-0142(19990901)86:5<878::AID-CNCR26>3.0.CO;2-Y

    Article  CAS  PubMed  Google Scholar 

  100. Kusters-Vandevelde HVN, Kusters B, Van Engen-Van Grunsven ACH et al (2015) Primary melanocytic tumors of the central nervous system: a review with focus on molecular aspects. Brain Pathol 25:209–226. https://doi.org/10.1111/bpa.12241

  101. Pedersen M, Küsters-Vandevelde HVN, Viros A et al (2013) Primary melanoma of the CNS in children is driven by congenital expression of oncogenic NRAS in melanocytes. Cancer Discov 3:458–469. https://doi.org/10.1158/2159-8290.CD-12-0464

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Arasaratnam M, Hong A, Shivalingam B et al (2017) Leptomeningeal melanoma – a case series in the era of modern systemic therapy. Pigment Cell Melanoma Res 31(1):120–124. https://doi.org/10.1111/ijlh.12426

    Article  PubMed  Google Scholar 

  103. Heux P (2017) Différenciation des cellules de la crête neurale lors de l’activation constitutive des protéines Nras ou Braf. Thesis submitted in partial fulfilment of the requirements for a Ph.D. from the Ecole Doctorale Sciences de la Vie et de la Santé (Marseille) of Aix-Marseille Université. https://www.theses.fr/2017AIXM0529

  104. Davidoff MS, Middendorff R, Enikolopov G et al (2004) Progenitor cells of the testosterone-producing Leydig cells revealed. J Cell Biol 167:935–944. https://doi.org/10.1083/jcb.200409107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Nagoshi N, Shibata S, Kubota Y et al (2008) Ontogeny and multipotency of neural crest-derived stem cells in mouse bone marrow, dorsal root ganglia, and whisker pad. Cell Stem Cell 2:392–403. https://doi.org/10.1016/j.stem.2008.03.005

    Article  CAS  PubMed  Google Scholar 

  106. Chai Y, Jiang X, Ito Y et al (2000) Fate of the mammalian cranial neural crest during tooth and mandibular morphogenesis. Development 127:1671–1679

    Article  CAS  PubMed  Google Scholar 

  107. Hellström M, Gerhardt H, Kalén M et al (2001) Lack of pericytes leads to endothelial hyperplasia and abnormal vascular morphogenesis. J Cell Biol 153:543–553

    Article  PubMed  PubMed Central  Google Scholar 

  108. Khan JA, Mendelson A, Kunisaki Y et al (2016) Fetal liver hematopoietic stem cell niches associate with portal vessels. Science 351:176–180. https://doi.org/10.1126/science.aad0084

    Article  CAS  PubMed  Google Scholar 

  109. Herrmann M, Bara JJ, Sprecher CM et al (2016) Pericyte plasticity - comparative investigation of the angiogenic and multilineage potential of pericytes from different human tissues. Eur Cell Mater 31:236–249

    Article  CAS  PubMed  Google Scholar 

  110. Bargehr J, Low L, Cheung C et al (2016) Embryological origin of human smooth muscle cells influences their ability to support endothelial network formation. Stem Cells Transl Med 5:946–959. https://doi.org/10.5966/sctm.2015-0282

    Article  PubMed  PubMed Central  Google Scholar 

  111. Steinbach SK, Husain M (2016) Vascular smooth muscle cell differentiation from human stem/progenitor cells. Methods 101:85–92. https://doi.org/10.1016/j.ymeth.2015.12.004

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Heather C. Etchevers .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Etchevers, H.C. (2021). Pericyte Ontogeny: The Use of Chimeras to Track a Cell Lineage of Diverse Germ Line Origins. In: Péault, B.M. (eds) Pericytes. Methods in Molecular Biology, vol 2235. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1056-5_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1056-5_6

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1055-8

  • Online ISBN: 978-1-0716-1056-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics