Skip to main content

Generation of Nonpolar Deletion Mutants in Listeria monocytogenes Using the “SOEing” Method

  • Protocol
  • First Online:
  • 913 Accesses

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2220))

Abstract

The ability to manipulate chromosomally encoded genes is a fundamental biological tool for the analysis of gene function. Here, we provide in greater depth a protocol for the creation of nonpolar unlabelled gene deletions in Listeria monocytogenes that are facilitated by the splicing overlap extension PCR technique. For mutagenesis in L. monocytogenes, we describe the pKSV7 plasmid-based approach, which facilitates the introduction of a spliced amplicon in place of the corresponding segment of chromosomal DNA.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Arnaud M, Chastanet A, Débarbouillé M (2004) New vector for efficient allelic replacement in naturally gram-positive bacteria. Appl Environ Microbiol 70:6887–6891. https://doi.org/10.1128/AEM.70.11.6887

    Article  CAS  PubMed  Google Scholar 

  2. Li G, Kathariou S (2003) An improved cloning vector for construction of gene replacements in Listeria monocytogenes. Appl Environ Microbiol 69:3020–3023. https://doi.org/10.1128/AEM.69.5.3020-3023.2003

    Article  PubMed  PubMed Central  Google Scholar 

  3. Monk IR, Gahan CGM, Hill C (2008) Tools for functional postgenomic analysis of Listeria monocytogenes. Appl Environ Microbiol 74:3921–3934. https://doi.org/10.1128/AEM.00314-08

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Horton RM (1995) PCR-mediated recombination and mutagenesis. SOEing together tailor-made genes. Mol Biotechnol 3:93–99. https://doi.org/10.1007/BF02789105

    Article  CAS  PubMed  Google Scholar 

  5. Horton RM, Cai Z, Ho SM, Pease LR (1990) Gene splicing by overlap extension: tailor-made genes using the polymerase chain reaction. BioTechniques 54:129–133. https://doi.org/10.2144/000114017

    Article  Google Scholar 

  6. Cotter PD, Gahan CGM, Hill C (2001) A glutamate decarboxylase system protects Listeria monocytogenes in gastric fluid. Mol Microbiol 40:465–475. https://doi.org/10.1046/j.1365-2958.2001.02398.x

    Article  CAS  PubMed  Google Scholar 

  7. Wiedmann M, Arvik TJ, Hurley RJ, Boor KJ (1998) General stress transcription factor sigmaB and its role in acid tolerance and virulence of Listeria monocytogenes. J Bacteriol 180:3650–3656

    Article  CAS  Google Scholar 

  8. Müller A, Rychli K, Muhterem-Uyar M et al (2013) Tn6188 – a novel transposon in Listeria monocytogenes responsible for tolerance to benzalkonium chloride. PLoS One 8:1–11. https://doi.org/10.1371/journal.pone.0076835

    Article  CAS  Google Scholar 

  9. Harter E, Wagner EM, Zaiser A et al (2017) Stress survival islet 2, predominantly present in Listeria monocytogenes strains of sequence type 121, is involved in the alkaline and oxidative stress responses. Appl Environ Microbiol 83:e00827-17. https://doi.org/10.1128/AEM.00827-17

    Article  PubMed  PubMed Central  Google Scholar 

  10. Harter E, Lassnig C, Wagner EM et al (2019) The novel internalins InlP1 and InlP4 and the internalin-like protein InlP3 enhance the pathogenicity of Listeria monocytogenes. Front Microbiol 10:1644. https://doi.org/10.3389/fmicb.2019.01644

    Article  PubMed  PubMed Central  Google Scholar 

  11. Cheng C, Jiang L, Ma T et al (2017) Carboxyl-terminal residues N478 and V479 required for the cytolytic activity of listeriolysin O play a critical role in Listeria monocytogenes pathogenicity. Front Immunol 8:1439. https://doi.org/10.3389/fimmu.2017.01439

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Smith K, Youngman P (1992) Use of a new integrational vector to investigate compartment-specific expression of the Bacillus subtilis spoIIM gene. Biochimie 74:705–711. https://doi.org/10.1016/0300-9084(92)90143-3

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the EU FOODSEG grant and the Austrian Science Fund (FWF), grant P27920-B22.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kathrin Rychli .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Rychli, K., Wagner, E., Guinane, C.M., Daly, K., Hill, C., Cotter, P.D. (2021). Generation of Nonpolar Deletion Mutants in Listeria monocytogenes Using the “SOEing” Method. In: Fox, E.M., Bierne, H., Stessl, B. (eds) Listeria Monocytogenes. Methods in Molecular Biology, vol 2220. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-0982-8_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-0982-8_13

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-0981-1

  • Online ISBN: 978-1-0716-0982-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics