Skip to main content

Protocol for Simulations of PEGylated Proteins with Martini 3

  • Protocol
  • First Online:
Structural Genomics

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2199))

Abstract

Enhancement of proteins by PEGylation is an active area of research. However, the interactions between polymer and protein are far from fully understood. To gain a better insight into these interactions or even make predictions, molecular dynamics (MD) simulations can be applied to study specific protein-polymer systems at molecular level detail. Here we present instructions on how to simulate PEGylated proteins using the latest iteration of the Martini coarse-grained (CG) force-field. CG MD simulations offer near atomistic information and at the same time allow to study complex biological systems over longer time and length scales than fully atomistic-level simulations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Canalle LA, Löwik DWPM, Van Hest JCM (2010) Polypeptide-polymer bioconjugates. Chem Soc Rev 39:329–353

    Article  CAS  Google Scholar 

  2. Pechar M, Kopečková P, Joss L et al (2002) Associative diblock copolymers of poly(ethylene glycol) and coiled-coil peptides. Macromol Biosci 2:199–206

    Article  CAS  Google Scholar 

  3. Milton Harris J, Martin NE, Modi M (2001) Pegylation: a novel process for modifying pharmacokinetics. Clin Pharmacokinet 40:539–551

    Article  Google Scholar 

  4. Pai SS, Hammouda B, Hong K et al (2011) The conformation of the poly(ethylene glycol) chain in mono-PEGylated lysozyme and mono-PEGylated human growth hormone. Bioconjug Chem 22:2317–2323

    Article  CAS  Google Scholar 

  5. Daly SM, Przybycien TM, Tilton RD (2005) Adsorption of poly(ethylene glycol)-modified lysozyme to silica. Langmuir 21:1328–1337

    Article  CAS  Google Scholar 

  6. Hamley IW (2014) PEG-peptide conjugates. Biomacromolecules 15:1543–1559

    Article  CAS  Google Scholar 

  7. Munasinghe A, Mathavan A, Mathavan A et al (2019) Molecular insight into the protein–polymer interactions in N-terminal PEGylated bovine serum albumin. J Phys Chem B 123:5196–5205

    Article  CAS  Google Scholar 

  8. Le Cœur C, Combet S, Carrot G et al (2015) Conformation of the poly(ethylene glycol) chains in DiPEGylated hemoglobin specifically probed by SANS: correlation with PEG length and in vivo efficiency. Langmuir 31:8402–8410

    Article  CAS  Google Scholar 

  9. Lin P, Colina CM (2019) Molecular simulation of protein–polymer conjugates. Curr Opin Chem Eng 23:44–50

    Article  Google Scholar 

  10. Marrink SJ, Risselada HJ, Yefimov S et al (2007) The MARTINI force field: coarse grained model for biomolecular simulations. J Phys Chem B 111:7812–7824

    Article  CAS  Google Scholar 

  11. Ingólfsson HI, Melo MN, Van Eerden FJ et al (2014) Lipid organization of the plasma membrane. J Am Chem Soc 136:14554–14559

    Article  CAS  Google Scholar 

  12. Thallmair S, Vainikka PA, Marrink SJ (2019) Lipid fingerprints and cofactor dynamics of light-harvesting complex II in different membranes. Biophys J 116:1446–1455

    Article  CAS  Google Scholar 

  13. Bruininks BMH, Souza PCT, Marrink SJ (2019) A practical view of the Martini force field. In: Biomolecular simulations, Methods in molecular biology (methods and protocols). Springer, New York, pp 105–127

    Chapter  Google Scholar 

  14. Souza PCT et al (2020) Martini 3, submitted

    Google Scholar 

  15. Alessandri R (2019) Multiscale modeling of organic materials: from the morphology up. Dissertation, University of Groningen

    Google Scholar 

  16. Monticelli L, Kandasamy SK, Periole X et al (2008) The MARTINI coarse-grained force field: extension to proteins. J Chem Theory Comput 4:819–834

    Article  CAS  Google Scholar 

  17. Uusitalo JJ, Ingólfsson HI, Akhshi P et al (2015) Martini coarse-grained force field: extension to DNA. J Chem Theory Comput 11:3932–3945

    Article  CAS  Google Scholar 

  18. Lo CA, Rzepiela AJ, De Vries AH et al (2009) Martini coarse-grained force field: extension to carbohydrates. J Chem Theory Comput 5:3195–3210

    Article  CAS  Google Scholar 

  19. Rossi G, Monticelli L, Puisto SR et al (2011) Coarse-graining polymers with the MARTINI force-field: polystyrene as a benchmark case. Soft Matter 7:698–708

    Article  CAS  Google Scholar 

  20. Panizon E, Bochicchio D, Monticelli L et al (2015) MARTINI coarse-grained models of polyethylene and polypropylene. J Phys Chem B 119:8209–8216

    Article  CAS  Google Scholar 

  21. Grunewald F, Rossi G, de Vries AH et al (2018) Transferable MARTINI model of poly(ethylene oxide). J Phys Chem B 122:7436–7449

    Article  CAS  Google Scholar 

  22. Monticelli L (2012) On atomistic and coarse-grained models for C60 fullerene. J Chem Theory Comput 8:1370–1378

    Article  CAS  Google Scholar 

  23. Ramezanghorbani F, Lin P, and Colina CM (2018) Optimizing protein–polymer interactions in a poly(ethylene glycol) coarse-grained model. J Phys Chem B acs.jpcb.8b05359

    Google Scholar 

  24. Woo SY, Lee H (2014) Molecular dynamics studies of PEGylated α-helical coiled coils and their self-assembled micelles. Langmuir 30:8848–8855

    Article  CAS  Google Scholar 

  25. Zaghmi A, Mendez-Villuendas E, Greschner AA et al (2019) Mechanisms of activity loss for a multi-PEGylated protein by experiment and simulation. Mater Today Chem 12:121–131

    Article  CAS  Google Scholar 

  26. Alessandri R, Souza PCT, Thallmair S et al (2019) Pitfalls of the Martini model. J Chem Theory Comput 15:5448–5460

    Article  CAS  Google Scholar 

  27. Souza PCT, Thallmair S, Marrink SJ et al (2019) An allosteric pathway in copper, zinc superoxide dismutase unravels the molecular mechanism of the G93A amyotrophic lateral sclerosis-linked mutation. J Phys Chem Lett 10:7740–7744

    Article  CAS  Google Scholar 

  28. Liu J, Qiu L, Alessandri R et al (2018) Enhancing molecular n-type doping of donor–acceptor copolymers by tailoring side chains. Adv Mater 30:1–9

    Google Scholar 

  29. Abraham MJ, Murtola T, Schulz R et al (2015) Gromacs: high performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX 1–2:19–25

    Article  Google Scholar 

  30. Kroon PC (2020) Automate, aggregate, assemble. Dissertation, University of Groningen

    Google Scholar 

  31. Touw WG, Baakman C, Black J et al (2015) A series of PDB-related databanks for everyday needs. Nucleic Acids Res 43:D364–D368

    Article  CAS  Google Scholar 

  32. Kabsch W, Sander C (1983) Dictionary of protein secondary structure: pattern recognition of hydrogen-bonded and geometrical features. Biopolymers 22:2577–2637

    Article  CAS  Google Scholar 

  33. Periole X, Cavalli M, Marrink S-J et al (2009) Combining an elastic network with a coarse-grained molecular force field: structure, dynamics, and intermolecular recognition. J Chem Theory Comput 5:2531–2543

    Article  CAS  Google Scholar 

  34. Poma AB, Cieplak M, Theodorakis PE (2017) Combining the MARTINI and structure-based coarse-grained approaches for the molecular dynamics studies of conformational transitions in proteins. J Chem Theory Comput 13:1366–1374

    Article  CAS  Google Scholar 

  35. Herzog FA, Braun L, Schoen I et al (2016) Improved side chain dynamics in MARTINI simulations of protein–lipid interfaces. J Chem Theory Comput 12:2446–2458

    Article  CAS  Google Scholar 

  36. Kuehner DE, Engmann J, Fergg F et al (1999) Lysozyme net charge and ion binding in concentrated aqueous electrolyte solutions. J Phys Chem B 103:1368–1374

    Article  CAS  Google Scholar 

  37. Bartik K, Redfield C, Dobson CM (1994) Measurement of the individual pKa values of acidic residues of hen and turkey lysozymes by two-dimensional 1H NMR. Biophys J 66:1180–1184

    Article  CAS  Google Scholar 

  38. Stroet M, Caron B, Visscher KM et al (2018) Automated topology builder version 3.0: prediction of solvation free enthalpies in water and hexane. J Chem Theory Comput 14:5834–5845

    Article  CAS  Google Scholar 

  39. Malde AK, Zuo L, Breeze M et al (2011) An automated force field topology builder (ATB) and repository: version 1.0. J Chem Theory Comput 7:4026–4037

    Article  CAS  Google Scholar 

  40. Berendsen HJC, Postma JPM, van Gunsteren WF et al (1984) Molecular dynamics with coupling to an external bath. J Chem Phys 81:3684–3690

    Article  CAS  Google Scholar 

  41. Parrinello M, Rahman A (1981) Polymorphic transitions in single crystals: a new molecular dynamics method. J Appl Phys 52:7182–7190

    Article  CAS  Google Scholar 

  42. Humphrey W, Dalke A, Schulten K (1996) VMD: Visual Molecular Dynamics. J Mol Graph 14:33–38

    Google Scholar 

  43. Rossi G, Barnoud J, Monticelli L (2014) Polystyrene nanoparticles perturb lipid membranes. J Phys Chem Lett 5:241–246

    Article  CAS  Google Scholar 

  44. Grunewald F, Souza PCT, Abdizadeh H, et al (2020) Titratable Martini Model for Constant pH Simulations. J Chem Phys 153:024118

    Google Scholar 

  45. Donnini S, Tegeler F, Groenhof G et al (2011) Constant pH molecular dynamics in explicit solvent with λ-dynamics. J Chem Theory Comput 7:1962–1978

    Article  CAS  Google Scholar 

  46. Colby RH, Rubinstein M (2003) Polymer physics. Oxford University Press, New York

    Google Scholar 

  47. Alessandri R, Uusitalo JJ, De Vries AH et al (2017) Bulk heterojunction morphologies with atomistic resolution from coarse-grain solvent evaporation simulations. J Am Chem Soc 139:3697–3705

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Siewert J. Marrink .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Grünewald, F., Kroon, P.C., Souza, P.C.T., Marrink, S.J. (2021). Protocol for Simulations of PEGylated Proteins with Martini 3. In: Chen, Y.W., Yiu, CP.B. (eds) Structural Genomics. Methods in Molecular Biology, vol 2199. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-0892-0_18

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-0892-0_18

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-0891-3

  • Online ISBN: 978-1-0716-0892-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics