Skip to main content

High-Throughput Protein Engineering by Massively Parallel Combinatorial Mutagenesis

  • Protocol
  • First Online:
Structural Genomics

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2199))

Abstract

Exploring how combinatorial mutations can be combined to optimize protein functions is important to guide protein engineering. Given the vast combinatorial space of changing multiple amino acids, identifying the top-performing variants from a large number of mutants might not be possible without a high-throughput gene assembly and screening strategy. Here we describe the CombiSEAL platform, a strategy that allows for modularization of any protein sequence into multiple segments for mutagenesis and barcoding, and seamless single-pot ligations of different segments to generate a library of combination mutants linked with concatenated barcodes at one end. By reading the barcodes using next-generation sequencing, activities of each protein variant during the protein selection process can be easily tracked in a high-throughput manner. CombiSEAL not only allows the identification of better protein variants but also enables the systematic analyses to distinguish the beneficial, deleterious, and neutral effects of combining different mutations on protein functions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bornscheuer UT, Huisman GW, Kazlauskas RJ, Lutz S, Moore JC, Robins K (2012) Engineering the third wave of biocatalysis. Nature 485(7397):185–194. https://doi.org/10.1038/nature11117

    Article  CAS  PubMed  Google Scholar 

  2. Fowler DM, Fields S (2014) Deep mutational scanning: a new style of protein science. Nat Methods 11(8):801–807. https://doi.org/10.1038/nmeth.3027

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Engler C, Kandzia R, Marillonnet S (2008) A one pot, one step, precision cloning method with high throughput capability. PLoS One 3(11):e3647. https://doi.org/10.1371/journal.pone.0003647

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Gibson DG, Young L, Chuang RY, Venter JC, Hutchison CA 3rd, Smith HO (2009) Enzymatic assembly of DNA molecules up to several hundred kilobases. Nat Methods 6(5):343–345. https://doi.org/10.1038/nmeth.1318

    Article  CAS  PubMed  Google Scholar 

  5. Choi GCG, Zhou P, Yuen CTL, Chan BKC, Xu F, Bao S, Chu HY, Thean D, Tan K, Wong KH, Zheng Z, Wong ASL (2019) Combinatorial mutagenesis en masse optimizes the genome editing activities of SpCas9. Nat Methods 16(8):722–730. https://doi.org/10.1038/s41592-019-0473-0

    Article  CAS  PubMed  Google Scholar 

  6. Aakre CD, Herrou J, Phung TN, Perchuk BS, Crosson S, Laub MT (2015) Evolving new protein-protein interaction specificity through promiscuous intermediates. Cell 163(3):594–606. https://doi.org/10.1016/j.cell.2015.09.055

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Olson CA, Wu NC, Sun R (2014) A comprehensive biophysical description of pairwise epistasis throughout an entire protein domain. Curr Biol 24(22):2643–2651. https://doi.org/10.1016/j.cub.2014.09.072

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Wong AS, Choi GC, Cheng AA, Purcell O, Lu TK (2015) Massively parallel high-order combinatorial genetics in human cells. Nat Biotechnol 33(9):952–961. https://doi.org/10.1038/nbt.3326

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Wong AS, Choi GC, Cui CH, Pregernig G, Milani P, Adam M, Perli SD, Kazer SW, Gaillard A, Hermann M, Shalek AK, Fraenkel E, Lu TK (2016) Multiplexed barcoded CRISPR-Cas9 screening enabled by CombiGEM. Proc Natl Acad Sci U S A 113(9):2544–2549. https://doi.org/10.1073/pnas.1517883113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was supported by the Croucher Foundation Start-up Allowance and Hong Kong Research Grants Council (GRF-17104619) to A.S.L.W.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alan S. L. Wong .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Wan, Y.K., Choi, G.C.G., Wong, A.S.L. (2021). High-Throughput Protein Engineering by Massively Parallel Combinatorial Mutagenesis. In: Chen, Y.W., Yiu, CP.B. (eds) Structural Genomics. Methods in Molecular Biology, vol 2199. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-0892-0_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-0892-0_1

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-0891-3

  • Online ISBN: 978-1-0716-0892-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics