Skip to main content

Mapping DNA Methylation in Mammals: The State of the Art

  • Protocol
  • First Online:
DNA Modifications

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2198))

Abstract

A complete understanding of the dynamics and function of cytosine modifications in mammalian biology is lacking. Central to achieving this understanding is the availability of techniques that permit sensitive and specific genome-wide mapping of DNA modifications in mammalian DNA. The last decade has seen the development of a vast arsenal of novel profiling approaches enabling epigeneticists to tackle research questions that were previously out of reach. Here, we review the techniques currently available for profiling DNA modifications in mammals, discuss their strengths and weaknesses, and speculate on the future direction of DNA modification profiling technologies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Ito S, Shen L, Dai Q, Wu SC, Collins LB, Swenberg JA, He C, Zhang Y (2011) Tet proteins can convert 5-methylcytosine to 5-formylcytosine and 5-carboxylcytosine. Science 333(6047):1300–1303. https://doi.org/10.1126/science.1210597

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Kriaucionis S, Heintz N (2009) The nuclear DNA base 5-hydroxymethylcytosine is present in Purkinje neurons and the brain. Science 324(5929):929–930. https://doi.org/10.1126/science.1169786

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Tahiliani M, Koh KP, Shen Y, Pastor WA, Bandukwala H, Brudno Y, Agarwal S, Iyer LM, Liu DR, Aravind L, Rao A (2009) Conversion of 5-methylcytosine to 5-hydroxymethylcytosine in mammalian DNA by MLL partner TET1. Science 324(5929):930–935. https://doi.org/10.1126/science.1170116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Frommer M, McDonald LE, Millar DS, Collis CM, Watt F, Grigg GW, Molloy PL, Paul CL (1992) A genomic sequencing protocol that yields a positive display of 5-methylcytosine residues in individual DNA strands. Proc Natl Acad Sci U S A 89(5):1827–1831. https://doi.org/10.1073/pnas.89.5.1827

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Lister R, Pelizzola M, Dowen RH, Hawkins RD, Hon G, Tonti-Filippini J, Nery JR, Lee L, Ye Z, Ngo QM, Edsall L, Antosiewicz-Bourget J, Stewart R, Ruotti V, Millar AH, Thomson JA, Ren B, Ecker JR (2009) Human DNA methylomes at base resolution show widespread epigenomic differences. Nature 462(7271):315–322. https://doi.org/10.1038/nature08514

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Meissner A, Gnirke A, Bell GW, Ramsahoye B, Lander ES, Jaenisch R (2005) Reduced representation bisulfite sequencing for comparative high-resolution DNA methylation analysis. Nucleic Acids Res 33(18):5868–5877. https://doi.org/10.1093/nar/gki901

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Guo H, Zhu P, Guo F, Li X, Wu X, Fan X, Wen L, Tang F (2015) Profiling DNA methylome landscapes of mammalian cells with single-cell reduced-representation bisulfite sequencing. Nat Protoc 10(5):645–659. https://doi.org/10.1038/nprot.2015.039

    Article  CAS  PubMed  Google Scholar 

  8. Yu M, Hon GC, Szulwach KE, Song CX, Jin P, Ren B, He C (2012) Tet-assisted bisulfite sequencing of 5-hydroxymethylcytosine. Nat Protoc 7(12):2159–2170. https://doi.org/10.1038/nprot.2012.137

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Booth MJ, Ost TW, Beraldi D, Bell NM, Branco MR, Reik W, Balasubramanian S (2013) Oxidative bisulfite sequencing of 5-methylcytosine and 5-hydroxymethylcytosine. Nat Protoc 8(10):1841–1851. https://doi.org/10.1038/nprot.2013.115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Neri F, Incarnato D, Krepelova A, Parlato C, Oliviero S (2016) Methylation-assisted bisulfite sequencing to simultaneously map 5fC and 5caC on a genome-wide scale for DNA demethylation analysis. Nat Protoc 11(7):1191–1205. https://doi.org/10.1038/nprot.2016.063

    Article  CAS  PubMed  Google Scholar 

  11. Lu X, Song CX, Szulwach K, Wang Z, Weidenbacher P, Jin P, He C (2013) Chemical modification-assisted bisulfite sequencing (CAB-Seq) for 5-carboxylcytosine detection in DNA. J Am Chem Soc 135(25):9315–9317. https://doi.org/10.1021/ja4044856

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Booth MJ, Marsico G, Bachman M, Beraldi D, Balasubramanian S (2014) Quantitative sequencing of 5-formylcytosine in DNA at single-base resolution. Nat Chem 6(5):435–440. https://doi.org/10.1038/nchem.1893

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Oda M, Glass JL, Thompson RF, Mo Y, Olivier EN, Figueroa ME, Selzer RR, Richmond TA, Zhang X, Dannenberg L, Green RD, Melnick A, Hatchwell E, Bouhassira EE, Verma A, Suzuki M, Greally JM (2009) High-resolution genome-wide cytosine methylation profiling with simultaneous copy number analysis and optimization for limited cell numbers. Nucleic Acids Res 37(12):3829–3839. https://doi.org/10.1093/nar/gkp260

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Maunakea AK, Nagarajan RP, Bilenky M, Ballinger TJ, D’Souza C, Fouse SD, Johnson BE, Hong C, Nielsen C, Zhao Y, Turecki G, Delaney A, Varhol R, Thiessen N, Shchors K, Heine VM, Rowitch DH, Xing X, Fiore C, Schillebeeckx M, Jones SJ, Haussler D, Marra MA, Hirst M, Wang T, Costello JF (2010) Conserved role of intragenic DNA methylation in regulating alternative promoters. Nature 466(7303):253–257. https://doi.org/10.1038/nature09165

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Sun Z, Terragni J, Borgaro JG, Liu Y, Yu L, Guan S, Wang H, Sun D, Cheng X, Zhu Z, Pradhan S, Zheng Y (2013) High-resolution enzymatic mapping of genomic 5-hydroxymethylcytosine in mouse embryonic stem cells. Cell Rep 3(2):567–576. https://doi.org/10.1016/j.celrep.2013.01.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Liu Y, Siejka-Zielinska P, Velikova G, Bi Y, Yuan F, Tomkova M, Bai C, Chen L, Schuster-Bockler B, Song CX (2019) Bisulfite-free direct detection of 5-methylcytosine and 5-hydroxymethylcytosine at base resolution. Nat Biotechnol 37(4):424–429. https://doi.org/10.1038/s41587-019-0041-2

    Article  CAS  PubMed  Google Scholar 

  17. Schutsky EK, DeNizio JE, Hu P, Liu MY, Nabel CS, Fabyanic EB, Hwang Y, Bushman FD, Wu H, Kohli RM (2018) Nondestructive, base-resolution sequencing of 5-hydroxymethylcytosine using a DNA deaminase. Nat Biotechnol. https://doi.org/10.1038/nbt.4204

  18. Zhu C, Gao Y, Guo H, Xia B, Song J, Wu X, Zeng H, Kee K, Tang F, Yi C (2017) Single-cell 5-formylcytosine landscapes of mammalian early embryos and ESCs at single-base resolution. Cell Stem Cell 20(5):720–731 e725. https://doi.org/10.1016/j.stem.2017.02.013

    Article  CAS  PubMed  Google Scholar 

  19. Xia B, Han D, Lu X, Sun Z, Zhou A, Yin Q, Zeng H, Liu M, Jiang X, Xie W, He C, Yi C (2015) Bisulfite-free, base-resolution analysis of 5-formylcytosine at the genome scale. Nat Methods 12(11):1047–1050. https://doi.org/10.1038/nmeth.3569

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Simpson JT, Workman RE, Zuzarte PC, David M, Dursi LJ, Timp W (2017) Detecting DNA cytosine methylation using nanopore sequencing. Nat Methods 14(4):407–410. https://doi.org/10.1038/nmeth.4184

    Article  CAS  PubMed  Google Scholar 

  21. Rand AC, Jain M, Eizenga JM, Musselman-Brown A, Olsen HE, Akeson M, Paten B (2017) Mapping DNA methylation with high-throughput nanopore sequencing. Nat Methods 14(4):411–413. https://doi.org/10.1038/nmeth.4189

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Flusberg BA, Webster DR, Lee JH, Travers KJ, Olivares EC, Clark TA, Korlach J, Turner SW (2010) Direct detection of DNA methylation during single-molecule, real-time sequencing. Nat Methods 7(6):461–465. https://doi.org/10.1038/nmeth.1459

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Bibikova M, Barnes B, Tsan C, Ho V, Klotzle B, Le JM, Delano D, Zhang L, Schroth GP, Gunderson KL, Fan JB, Shen R (2011) High density DNA methylation array with single CpG site resolution. Genomics 98(4):288–295. https://doi.org/10.1016/j.ygeno.2011.07.007

    Article  CAS  PubMed  Google Scholar 

  24. Moran S, Arribas C, Esteller M (2016) Validation of a DNA methylation microarray for 850,000 CpG sites of the human genome enriched in enhancer sequences. Epigenomics 8(3):389–399. https://doi.org/10.2217/epi.15.114

    Article  CAS  PubMed  Google Scholar 

  25. Wu MC, Joubert BR, Kuan PF, Haberg SE, Nystad W, Peddada SD, London SJ (2014) A systematic assessment of normalization approaches for the Infinium 450K methylation platform. Epigenetics 9(2):318–329. https://doi.org/10.4161/epi.27119

    Article  CAS  PubMed  Google Scholar 

  26. Pastor WA, Pape UJ, Huang Y, Henderson HR, Lister R, Ko M, McLoughlin EM, Brudno Y, Mahapatra S, Kapranov P, Tahiliani M, Daley GQ, Liu XS, Ecker JR, Milos PM, Agarwal S, Rao A (2011) Genome-wide mapping of 5-hydroxymethylcytosine in embryonic stem cells. Nature 473(7347):394–397. https://doi.org/10.1038/nature10102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Song CX, Szulwach KE, Fu Y, Dai Q, Yi C, Li X, Li Y, Chen CH, Zhang W, Jian X, Wang J, Zhang L, Looney TJ, Zhang B, Godley LA, Hicks LM, Lahn BT, Jin P, He C (2011) Selective chemical labeling reveals the genome-wide distribution of 5-hydroxymethylcytosine. Nat Biotechnol 29(1):68–72. https://doi.org/10.1038/nbt.1732

    Article  CAS  PubMed  Google Scholar 

  28. Brinkman AB, Simmer F, Ma K, Kaan A, Zhu J, Stunnenberg HG (2010) Whole-genome DNA methylation profiling using MethylCap-seq. Methods 52(3):232–236. https://doi.org/10.1016/j.ymeth.2010.06.012

    Article  CAS  PubMed  Google Scholar 

  29. Nair SS, Coolen MW, Stirzaker C, Song JZ, Statham AL, Strbenac D, Robinson MD, Clark SJ (2011) Comparison of methyl-DNA immunoprecipitation (MeDIP) and methyl-CpG binding domain (MBD) protein capture for genome-wide DNA methylation analysis reveal CpG sequence coverage bias. Epigenetics 6(1):34–44. https://doi.org/10.4161/epi.6.1.13313

    Article  CAS  PubMed  Google Scholar 

  30. Cui L, Chung TH, Tan D, Sun X, Jia XY (2014) JBP1-seq: a fast and efficient method for genome-wide profiling of 5hmC. Genomics 104(5):368–375. https://doi.org/10.1016/j.ygeno.2014.08.023

    Article  CAS  PubMed  Google Scholar 

  31. Weber M, Davies JJ, Wittig D, Oakeley EJ, Haase M, Lam WL, Schubeler D (2005) Chromosome-wide and promoter-specific analyses identify sites of differential DNA methylation in normal and transformed human cells. Nat Genet 37(8):853–862. https://doi.org/10.1038/ng1598

    Article  CAS  PubMed  Google Scholar 

  32. Lentini A, Lagerwall C, Vikingsson S, Mjoseng HK, Douvlataniotis K, Vogt H, Green H, Meehan RR, Benson M, Nestor CE (2018) A reassessment of DNA-immunoprecipitation-based genomic profiling. Nat Methods 15(7):499–504. https://doi.org/10.1038/s41592-018-0038-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Lindahl T (1993) Instability and decay of the primary structure of DNA. Nature 362(6422):709–715. https://doi.org/10.1038/362709a0

    Article  CAS  PubMed  Google Scholar 

  34. Genereux DP, Johnson WC, Burden AF, Stoger R, Laird CD (2008) Errors in the bisulfite conversion of DNA: modulating inappropriate- and failed-conversion frequencies. Nucleic Acids Res 36(22):e150. https://doi.org/10.1093/nar/gkn691

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Lister R, Ecker JR (2009) Finding the fifth base: genome-wide sequencing of cytosine methylation. Genome Res 19(6):959–966. https://doi.org/10.1101/gr.083451.108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Ziller MJ, Hansen KD, Meissner A, Aryee MJ (2015) Coverage recommendations for methylation analysis by whole-genome bisulfite sequencing. Nat Methods 12(3):230–232, 231 p following 232. https://doi.org/10.1038/nmeth.3152

    Article  CAS  PubMed  Google Scholar 

  37. Smith ZD, Gu H, Bock C, Gnirke A, Meissner A (2009) High-throughput bisulfite sequencing in mammalian genomes. Methods 48(3):226–232. https://doi.org/10.1016/j.ymeth.2009.05.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Landau DA, Clement K, Ziller MJ, Boyle P, Fan J, Gu H, Stevenson K, Sougnez C, Wang L, Li S, Kotliar D, Zhang W, Ghandi M, Garraway L, Fernandes SM, Livak KJ, Gabriel S, Gnirke A, Lander ES, Brown JR, Neuberg D, Kharchenko PV, Hacohen N, Getz G, Meissner A, Wu CJ (2014) Locally disordered methylation forms the basis of intratumor methylome variation in chronic lymphocytic leukemia. Cancer Cell 26(6):813–825. https://doi.org/10.1016/j.ccell.2014.10.012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Olova N, Krueger F, Andrews S, Oxley D, Berrens RV, Branco MR, Reik W (2018) Comparison of whole-genome bisulfite sequencing library preparation strategies identifies sources of biases affecting DNA methylation data. Genome Biol 19(1):33. https://doi.org/10.1186/s13059-018-1408-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Krueger F, Kreck B, Franke A, Andrews SR (2012) DNA methylome analysis using short bisulfite sequencing data. Nat Methods 9(2):145–151. https://doi.org/10.1038/nmeth.1828

    Article  CAS  PubMed  Google Scholar 

  41. Xiong Z, Li M, Yang F, Ma Y, Sang J, Li R, Li Z, Zhang Z, Bao Y (2020) EWAS data hub: a resource of DNA methylation array data and metadata. Nucleic Acids Res 48(D1):D890–D895. https://doi.org/10.1093/nar/gkz840

    Article  PubMed  Google Scholar 

  42. Li M, Zou D, Li Z, Gao R, Sang J, Zhang Y, Li R, Xia L, Zhang T, Niu G, Bao Y, Zhang Z (2019) EWAS atlas: a curated knowledgebase of epigenome-wide association studies. Nucleic Acids Res 47(D1):D983–D988. https://doi.org/10.1093/nar/gky1027

    Article  CAS  PubMed  Google Scholar 

  43. Zhou W, Laird PW, Shen H (2017) Comprehensive characterization, annotation and innovative use of Infinium DNA methylation BeadChip probes. Nucleic Acids Res 45(4):e22. https://doi.org/10.1093/nar/gkw967

    Article  CAS  PubMed  Google Scholar 

  44. Nestor C, Ruzov A, Meehan R, Dunican D (2010) Enzymatic approaches and bisulfite sequencing cannot distinguish between 5-methylcytosine and 5-hydroxymethylcytosine in DNA. BioTechniques 48(4):317–319. https://doi.org/10.2144/000113403

    Article  CAS  PubMed  Google Scholar 

  45. Huang Y, Pastor WA, Shen Y, Tahiliani M, Liu DR, Rao A (2010) The behaviour of 5-hydroxymethylcytosine in bisulfite sequencing. PLoS One 5(1):e8888. https://doi.org/10.1371/journal.pone.0008888

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Jin SG, Kadam S, Pfeifer GP (2010) Examination of the specificity of DNA methylation profiling techniques towards 5-methylcytosine and 5-hydroxymethylcytosine. Nucleic Acids Res 38(11):e125. https://doi.org/10.1093/nar/gkq223

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Wu H, Zhang Y (2014) Reversing DNA methylation: mechanisms, genomics, and biological functions. Cell 156(1–2):45–68. https://doi.org/10.1016/j.cell.2013.12.019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Levene MJ, Korlach J, Turner SW, Foquet M, Craighead HG, Webb WW (2003) Zero-mode waveguides for single-molecule analysis at high concentrations. Science 299(5607):682–686. https://doi.org/10.1126/science.1079700

    Article  CAS  PubMed  Google Scholar 

  49. Eid J, Fehr A, Gray J, Luong K, Lyle J, Otto G, Peluso P, Rank D, Baybayan P, Bettman B, Bibillo A, Bjornson K, Chaudhuri B, Christians F, Cicero R, Clark S, Dalal R, Dewinter A, Dixon J, Foquet M, Gaertner A, Hardenbol P, Heiner C, Hester K, Holden D, Kearns G, Kong X, Kuse R, Lacroix Y, Lin S, Lundquist P, Ma C, Marks P, Maxham M, Murphy D, Park I, Pham T, Phillips M, Roy J, Sebra R, Shen G, Sorenson J, Tomaney A, Travers K, Trulson M, Vieceli J, Wegener J, Wu D, Yang A, Zaccarin D, Zhao P, Zhong F, Korlach J, Turner S (2009) Real-time DNA sequencing from single polymerase molecules. Science 323(5910):133–138. https://doi.org/10.1126/science.1162986

    Article  CAS  PubMed  Google Scholar 

  50. Schadt EE, Banerjee O, Fang G, Feng Z, Wong WH, Zhang X, Kislyuk A, Clark TA, Luong K, Keren-Paz A, Chess A, Kumar V, Chen-Plotkin A, Sondheimer N, Korlach J, Kasarskis A (2013) Modeling kinetic rate variation in third generation DNA sequencing data to detect putative modifications to DNA bases. Genome Res 23(1):129–141. https://doi.org/10.1101/gr.136739.111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Douvlataniotis K, Bensberg M, Lentini A, Gylemo B, Nestor CE (2020) No evidence for DNA N6-methyladenine in mammals. Sci Adv 6(12):eaay3335

    Article  Google Scholar 

  52. Zhu S, Beaulaurier J, Deikus G, Wu TP, Strahl M, Hao Z, Luo G, Gregory JA, Chess A, He C, Xiao A, Sebra R, Schadt EE, Fang G (2018) Mapping and characterizing N6-methyladenine in eukaryotic genomes using single-molecule real-time sequencing. Genome Res 28(7):1067–1078. https://doi.org/10.1101/gr.231068.117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Deamer D, Akeson M, Branton D (2016) Three decades of nanopore sequencing. Nat Biotechnol 34(5):518–524. https://doi.org/10.1038/nbt.3423

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Ni P, Huang N, Zhang Z, Wang DP, Liang F, Miao Y, Xiao CL, Luo F, Wang J (2019) DeepSignal: detecting DNA methylation state from Nanopore sequencing reads using deep-learning. Bioinformatics 35(22):4586–4595. https://doi.org/10.1093/bioinformatics/btz276

    Article  CAS  PubMed  Google Scholar 

  55. Liu Q, Fang L, Yu G, Wang D, Xiao CL, Wang K (2019) Detection of DNA base modifications by deep recurrent neural network on Oxford Nanopore sequencing data. Nat Commun 10(1):2449. https://doi.org/10.1038/s41467-019-10168-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Smallwood SA, Lee HJ, Angermueller C, Krueger F, Saadeh H, Peat J, Andrews SR, Stegle O, Reik W, Kelsey G (2014) Single-cell genome-wide bisulfite sequencing for assessing epigenetic heterogeneity. Nat Methods 11(8):817–820. https://doi.org/10.1038/nmeth.3035

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Clark SJ, Argelaguet R, Kapourani CA, Stubbs TM, Lee HJ, Alda-Catalinas C, Krueger F, Sanguinetti G, Kelsey G, Marioni JC, Stegle O, Reik W (2018) scNMT-seq enables joint profiling of chromatin accessibility DNA methylation and transcription in single cells. Nat Commun 9(1):781. https://doi.org/10.1038/s41467-018-03149-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Wu X, Inoue A, Suzuki T, Zhang Y (2017) Simultaneous mapping of active DNA demethylation and sister chromatid exchange in single cells. Genes Dev 31(5):511–523. https://doi.org/10.1101/gad.294843.116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Angermueller C, Clark SJ, Lee HJ, Macaulay IC, Teng MJ, Hu TX, Krueger F, Smallwood S, Ponting CP, Voet T, Kelsey G, Stegle O, Reik W (2016) Parallel single-cell sequencing links transcriptional and epigenetic heterogeneity. Nat Methods 13(3):229–232. https://doi.org/10.1038/nmeth.3728

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Karemaker ID, Vermeulen M (2018) Single-cell DNA methylation profiling: technologies and biological applications. Trends Biotechnol 36(9):952–965. https://doi.org/10.1016/j.tibtech.2018.04.002

    Article  CAS  PubMed  Google Scholar 

  61. Cross SH, Charlton JA, Nan X, Bird AP (1994) Purification of CpG islands using a methylated DNA binding column. Nat Genet 6(3):236–244. https://doi.org/10.1038/ng0394-236

    Article  CAS  PubMed  Google Scholar 

  62. Nan X, Meehan RR, Bird A (1993) Dissection of the methyl-CpG binding domain from the chromosomal protein MeCP2. Nucleic Acids Res 21(21):4886–4892. https://doi.org/10.1093/nar/21.21.4886

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Ficz G, Branco MR, Seisenberger S, Santos F, Krueger F, Hore TA, Marques CJ, Andrews S, Reik W (2011) Dynamic regulation of 5-hydroxymethylcytosine in mouse ES cells and during differentiation. Nature 473(7347):398–402. https://doi.org/10.1038/nature10008

    Article  CAS  PubMed  Google Scholar 

  64. Harris RA, Wang T, Coarfa C, Nagarajan RP, Hong C, Downey SL, Johnson BE, Fouse SD, Delaney A, Zhao Y, Olshen A, Ballinger T, Zhou X, Forsberg KJ, Gu J, Echipare L, O’Geen H, Lister R, Pelizzola M, Xi Y, Epstein CB, Bernstein BE, Hawkins RD, Ren B, Chung WY, Gu H, Bock C, Gnirke A, Zhang MQ, Haussler D, Ecker JR, Li W, Farnham PJ, Waterland RA, Meissner A, Marra MA, Hirst M, Milosavljevic A, Costello JF (2010) Comparison of sequencing-based methods to profile DNA methylation and identification of monoallelic epigenetic modifications. Nat Biotechnol 28(10):1097–1105. https://doi.org/10.1038/nbt.1682

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Shen L, Wu H, Diep D, Yamaguchi S, D’Alessio AC, Fung HL, Zhang K, Zhang Y (2013) Genome-wide analysis reveals TET- and TDG-dependent 5-methylcytosine oxidation dynamics. Cell 153(3):692–706. https://doi.org/10.1016/j.cell.2013.04.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Matarese F, Carrillo-de Santa Pau E, Stunnenberg HG (2011) 5-Hydroxymethylcytosine: a new kid on the epigenetic block? Mol Syst Biol 7:562. https://doi.org/10.1038/msb.2011.95

    Article  PubMed  PubMed Central  Google Scholar 

  67. Thomson JP, Hunter JM, Nestor CE, Dunican DS, Terranova R, Moggs JG, Meehan RR (2013) Comparative analysis of affinity-based 5-hydroxymethylation enrichment techniques. Nucleic Acids Res 41(22):e206. https://doi.org/10.1093/nar/gkt1080

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Skvortsova K, Zotenko E, Luu PL, Gould CM, Nair SS, Clark SJ, Stirzaker C (2017) Comprehensive evaluation of genome-wide 5-hydroxymethylcytosine profiling approaches in human DNA. Epigenetics Chromatin 10:16. https://doi.org/10.1186/s13072-017-0123-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Song CX, Szulwach KE, Dai Q, Fu Y, Mao SQ, Lin L, Street C, Li Y, Poidevin M, Wu H, Gao J, Liu P, Li L, Xu GL, Jin P, He C (2013) Genome-wide profiling of 5-formylcytosine reveals its roles in epigenetic priming. Cell 153(3):678–691. https://doi.org/10.1016/j.cell.2013.04.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Kidder BL, Hu G, Zhao K (2011) ChIP-Seq: technical considerations for obtaining high-quality data. Nat Immunol 12(10):918–922. https://doi.org/10.1038/ni.2117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Mohn F, Weber M, Schubeler D, Roloff TC (2009) Methylated DNA immunoprecipitation (MeDIP). Methods Mol Biol 507:55–64. https://doi.org/10.1007/978-1-59745-522-0_5

    Article  CAS  PubMed  Google Scholar 

  72. Taiwo O, Wilson GA, Morris T, Seisenberger S, Reik W, Pearce D, Beck S, Butcher LM (2012) Methylome analysis using MeDIP-seq with low DNA concentrations. Nat Protoc 7(4):617–636. https://doi.org/10.1038/nprot.2012.012

    Article  CAS  PubMed  Google Scholar 

  73. Laajala TD, Raghav S, Tuomela S, Lahesmaa R, Aittokallio T, Elo LL (2009) A practical comparison of methods for detecting transcription factor binding sites in ChIP-seq experiments. BMC Genomics 10:618. https://doi.org/10.1186/1471-2164-10-618

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Struthers L, Patel R, Clark J, Thomas S (1998) Direct detection of 8-oxodeoxyguanosine and 8-oxoguanine by avidin and its analogues. Anal Biochem 255(1):20–31. https://doi.org/10.1006/abio.1997.2354

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Colm E. Nestor .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Lentini, A., Nestor, C.E. (2021). Mapping DNA Methylation in Mammals: The State of the Art. In: Ruzov, A., Gering, M. (eds) DNA Modifications. Methods in Molecular Biology, vol 2198. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-0876-0_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-0876-0_4

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-0875-3

  • Online ISBN: 978-1-0716-0876-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics