Skip to main content

Cryopreservation of Mammalian Oocytes: Slow Cooling and Vitrification as Successful Methods for Cryogenic Storage

  • Protocol
  • First Online:
Cryopreservation and Freeze-Drying Protocols

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2180))

  • 3300 Accesses

Abstract

Two basic methods for the laboratory-focused cryopreservation of mammalian oocytes are described, based on work with murine oocytes. One method uses a relatively low concentration of the cryoprotectant propanediol plus sucrose and requires controlled rate cooling equipment to achieve a slow cooling rate. This method has also produced live births from cryopreserved human oocytes. The second method, which is described here, employs a high concentration of the cryoprotectant dimethyl sulfoxide plus a low concentration of polyethylene glycol. This is a vitrification method, which involves ultra-rapid cooling by plunging standard straws into liquid nitrogen vapor, hence avoiding the need for specialized equipment, but requires technical ability to manipulate the oocytes quickly in the highly concentrated cryoprotectant solutions. Murine oocytes that have been vitrified using this technique have resulted in live births. Vitrification using other cryoprotectant mixtures is now a popular clinically accepted method for cryobanking of human oocytes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Fuller B, Paynter S (2004) Fundamentals of cryobiology in reproductive medicine. Reprod Biomed Online 9:680–691

    Article  PubMed  Google Scholar 

  2. Keros V, Fuller BJ (2015) Cryopreservation of mammalian oocytes. In: Wolkers WF, Oldenhof H (eds) Methods in cryopreservation and freeze-drying, Methods in molecular biology. Springer, pp 289–304

    Google Scholar 

  3. Yurchuk T, Petrushko M, Fuller B (2018) Science of cryopreservation in reproductive medicine - embryos and oocytes as exemplars. Early Hum Dev 126:6–9

    Article  PubMed  Google Scholar 

  4. Iussig B, Maggiulli R, Fabozzi G et al (2019) A brief history of oocyte cryopreservation: arguments and facts. Acta Obstet Gynecol Scand 98:550–558

    Article  PubMed  Google Scholar 

  5. Gook DA (2011) History of oocyte cryopreservation. Reprod Biomed Online 23:281–289

    Article  CAS  PubMed  Google Scholar 

  6. Boldt J (2011) Current results with slow freezing and vitrification of the human oocyte. Reprod Biomed Online 23:314–322

    Article  CAS  PubMed  Google Scholar 

  7. Practice Committees of American Society for Reproductive Medicine; Society for Assisted Reproductive Technology (2013) Mature oocyte cryopreservation: a guideline. Fertil Steril 99:37–43

    Article  Google Scholar 

  8. Al-Hasani S, Diedrich K, van der Ven H, Reinecke A, Hartje M, Krebs D (1987) Cryopreservation of human oocytes. Hum Reprod 2:695–700

    Article  CAS  PubMed  Google Scholar 

  9. Leibo SP, Pool TB (2011) The principal variables of cryopreservation: solutions, temperatures and rate changes. Fertil Steril 96:269–276

    Article  CAS  PubMed  Google Scholar 

  10. Fuller B, Paynter S (2009) The rational basis for controlled rate slow cooling. In: Borini A, Coticchio G (eds) Preservation of human oocytes, from cryobiology science to clinical applications. Informa healthcare, London, pp 25–35

    Chapter  Google Scholar 

  11. Fuller B, Gonzalez-Molina J, Erro E, De Mendonca J, Chalmers S, Awan M, Poirier A, Selden C (2017) Applications and optimization of cryopreservation technologies to cellular therapeutics. Cell Gene Ther Insights 3:359–378

    Article  Google Scholar 

  12. Rall WF, Fahy GM (1985) Ice-free cryopreservation of mouse embryos at −196 degrees C by vitrification. Nature 313:573–575

    Article  CAS  PubMed  Google Scholar 

  13. Chen C (1986) Pregnancy after human oocyte cryopreservation. Lancet 1:884–886

    Article  CAS  PubMed  Google Scholar 

  14. Trounson A (1986) Preservation of human eggs and embryos. Fertil Steril 46:1–12

    CAS  PubMed  Google Scholar 

  15. Gook DA, Schiewe MC, Osborn SM, Asch RH, Jansen RP, Johnston WI (1995) Intracytoplasmic sperm injection and embryo development of human oocytes cryopreserved using 1,2-propanediol. Hum Reprod 10:2637–2641

    Article  CAS  PubMed  Google Scholar 

  16. Fabbri R, Porcu E, Marsella T, Primavera MR, Seracchioli R, Ciotti PM, Magrini O, Venturoli S, Flamigni C (1998) Oocyte cryopreservation. Hum Reprod 13(Suppl 4):98–108

    Article  PubMed  Google Scholar 

  17. Carroll J, Wood MJ, Whittingham DG (1993) Normal fertilization and development of frozen-thawed mouse oocytes: protective action of certain macromolecules. Biol Reprod 48(3):606–612

    Article  CAS  PubMed  Google Scholar 

  18. Whittingham DG (1977) Fertilization in vitro and development to term of unfertilized mouse oocytes previously stored at −196 degrees C. J Reprod Fertil 49:89–94

    Article  CAS  PubMed  Google Scholar 

  19. Bernard A, Fuller BJ (1996) Cryopreservation of human oocytes: a review of current problems and perspectives. Hum Reprod Update 2:193–207

    Article  CAS  PubMed  Google Scholar 

  20. Leibo SP, McGrath JJ, Cravalho EG (1978) Microscopic observation of intracellular ice formation in unfertilized mouse ova as a function of cooling rate. Cryobiology 15:257–271

    Article  CAS  PubMed  Google Scholar 

  21. Al-Hasani A, Kirsch J, Diedrich K, Blanke S, van der Ven H, Krebs D (1989) Successful embryo transfer of cryopreserved and in vitro fertilised rabbit oocytes. Hum Reprod 4:77–79

    Article  CAS  PubMed  Google Scholar 

  22. Fuku E, Kojima T, Shoiya Y, Marcus GJ, Downey BR (1992) In vitro fertilization and development of frozen-thawed bovine oocytes. Cryobiology 29:485–492

    Article  CAS  PubMed  Google Scholar 

  23. MacLellan LJ, Carnevale EM, Coutinho da Silva MA, Scoggin CF, Bruemmer JE, Squires EL (2002) Pregnancies from vitrified equine oocytes collected from super-stimulated and non-stimulated mares. Theriogenology 58:911–919

    Article  CAS  PubMed  Google Scholar 

  24. Pope CE, Gómez MC, Kagawa N, Kuwayama M, Leibo SP, Dresser BL (2012) In vivo survival of domestic cat oocytes after vitrification, intracytoplasmic sperm injection and embryo transfer. Theriogenology 77:531–538

    Article  CAS  PubMed  Google Scholar 

  25. Porcu E, Fabbri R, Seracchioli R, Ciotti PM, Magrini O, Flamigni C (1997) Birth of a healthy female after intracytoplasmic sperm injection of cryopreserved human oocytes. Fertil Steril 68:724–726

    Article  CAS  PubMed  Google Scholar 

  26. De Santis L, Cino I, Rabellotti E, Papaleo E, Calzi F, Fusi FM, Brigante C, Ferrari A (2007) Oocyte cryopreservation: clinical outcome of slow-cooling protocols differing in sucrose concentration. Reprod Biomed Online 14:57–63

    Article  PubMed  Google Scholar 

  27. Borini A, Coticchio G (2009) The efficacy and safety of human oocyte cryopreservation by slow cooling. Semin Reprod Med 27:443–449

    Article  CAS  PubMed  Google Scholar 

  28. Rienzi L, Romano S, Albricci L, Maggiulli R, Capalbo A, Baroni E, Colamaria S, Sapienza F, Ubaldi F (2010) Embryo development of fresh 'versus' vitrified metaphase II oocytes after ICSI: a prospective randomized sibling-oocyte study. Hum Reprod 25:66–73

    Article  PubMed  Google Scholar 

  29. Antinori M, Licata E, Dani G, Cerusico F, Versaci C, d'Angelo D, Antinori S (2007) Cryotop vitrification of human oocytes results in high survival rate and healthy deliveries. Reprod Biomed Online 14:72–79

    Article  PubMed  Google Scholar 

  30. Cobo A, Kuwayama M, Pérez S, Ruiz A, Pellicer A, Remohí J (2008) Comparison of concomitant outcome achieved with fresh and cryopreserved donor oocytes vitrified by the Cryotop method. Fertil Steril 89:1657–1664

    Article  PubMed  Google Scholar 

  31. Levi-Setti PE, Patrizio P, Scaravelli G (2016) Evolution of human oocyte cryopreservation: slow freezing versus vitrification. Curr Opin Endocrinol Diabetes Obes 23:445–450

    Article  CAS  PubMed  Google Scholar 

  32. Bleil JD, Wassarman PM (1980) Structure and function of the zona pellucida: identification and characterization of the proteins of the mouse oocyte’s zona pellucida. Dev Biol 76:185–202

    Article  CAS  PubMed  Google Scholar 

  33. Carroll J, Depypere H, Matthews CD (1990) Freeze-thaw induced changes of the zona pellucida explains decreased rates of fertilisation in frozen-thawed mouse oocytes. J Reprod Fertil 90:547–553

    Article  CAS  PubMed  Google Scholar 

  34. Larman MG, Sheehan CB, Gardner DK (2006) Calcium-free vitrification reduces cryoprotectant-induced zona pellucida hardening and increases fertilization rates in mouse oocytes. Reproduction 131:53–61

    Article  CAS  PubMed  Google Scholar 

  35. Bianchi V, Coticchio G, Fava L, Flamigni C, Borini A (2005) Meiotic spindle imaging in human oocytes frozen with a slow freezing procedure involving high sucrose concentration. Hum Reprod 20:1078–1083

    Article  CAS  PubMed  Google Scholar 

  36. Stachecki JJ, Cohen J (2004) An overview of oocyte cryopreservation. Reprod Biomed Online 9:152–163

    Article  PubMed  Google Scholar 

  37. Rienzi L, Martinez F, Ubaldi F, Minasi MG, Iacobelli M, Tesarik J, Greco E (2004) Polscope analysis of meiotic spindle changes in living metaphase II human oocytes during the freezing and thawing procedures. Hum Reprod 19:655–659

    Article  CAS  PubMed  Google Scholar 

  38. Combelles CM, Ceyhan ST, Wang H, Racowsky C (2011) Maturation outcomes are improved following Cryoleaf vitrification of immature human oocytes when compared tocholine-based slow-freezing. J Assist Reprod Genet 28:1183–1192

    Article  PubMed  PubMed Central  Google Scholar 

  39. Khalili MA, Shahedi A, Ashourzadeh S, Nottola SA, Macchiarelli G, Palmerini MG (2017) Vitrification of human immature oocytes before and after in vitro maturation: a review. J Assist Reprod Genet 34:1413–1426

    Article  PubMed  PubMed Central  Google Scholar 

  40. Brower PT, Schultz RM (1982) Intercellular communication between granulosa cells and mouse oocytes: existence and possible nutritional role during oocyte growth. Dev Biol 90:144–153

    Article  CAS  PubMed  Google Scholar 

  41. Ruppert-Lingham CJ, Paynter SJ, Godfrey J, Fuller BJ, Shaw RW (2003) Developmental potential of murine germinal vesicle stage cumulus-oocyte complexes following exposure to dimethyl sulphoxide or cryopreservation: loss of membrane integrity of cumulus cells after thawing. Hum Reprod 18:392–398

    Article  CAS  PubMed  Google Scholar 

  42. Keros V, Xella S, Hultenby K, Pettersson K, Sheikhi M, Volpe A, Hreinsson J, Hovatta O (2009) Vitrification versus controlled-rate freezing in cryopreservation of human ovarian tissue. Hum Reprod 24:1670–1683

    Article  CAS  PubMed  Google Scholar 

  43. Shahedi A, Hosseini A, Khalili MA, Norouzian M, Salehi M, Piriaei A, Nottola SA (2013) The effect of vitrification on ultrastructure of human in vitro matured germinal vesicle oocytes. Eur J Obstet Gynecol Reprod Biol 67:69–75

    Article  Google Scholar 

  44. Isachenko V, Soler C, Isachenko E, Perez-Sanchez F, Grishchenko V (1998) Vitrification of immature porcine oocytes: effects of lipid droplets, temperature, cytoskeleton, and addition and removal of cryoprotectant. Cryobiology 36:250–253

    Article  CAS  PubMed  Google Scholar 

  45. Bianchi V, Lappi M, Bonu MA, Borini A (2012) Oocyte slow freezing using a 0.2−0.3 M sucrose concentration protocol: is it really the time to trash the cryopreservation machine? Fertil Steril 97:1101–1107

    Article  CAS  PubMed  Google Scholar 

  46. Kuleshova L, Gianaroli L, Magli C, Ferraretti A, Trounson A (1999) Birth following vitrification of a small number of human oocytes. Hum Reprod 14:3077–3079

    Article  CAS  PubMed  Google Scholar 

  47. Yoon TK, Chung HM, Lim JM, Han SY, Ko JJ, Cha KY (2000) Pregnancy and delivery of healthy infants developed from vitrified oocytes in a stimulated in vitro fertilization-embryo transfer program. Fertil Steril 74:180–181

    Article  CAS  PubMed  Google Scholar 

  48. Noyes N, Porcu E, Borini A (2009) Over 900 oocyte cryopreservation babies born with no apparent increase in congenital anomalies. Reprod Biomed Online 18:769–776

    Article  CAS  PubMed  Google Scholar 

  49. UK Human Fertilisation and Embryology Authority. Egg freezing in fertility treatment. Trends and figures: 2010−2016. September, 2018. https://www.hfea.gov.uk/media/2656/egg-freezing-in-fertility-treatment-trends-and-figures-2010-2016-final.pdf

  50. Levi-Setti PE, Borini A, Patrizio P, Bolli S, Vigiliano V, De Luca R, Scaravelli G (2016) ART results with frozen oocytes: data from the Italian ART registry (2005−2013). J Assist Reprod Genet 33:123–128

    Article  PubMed  Google Scholar 

  51. Nagy ZP, Anderson RE, Feinberg EC, Hayward B, Mahony MC (2017) The human oocyte preservation experience (HOPE) registry: evaluation of cryopreservation techniques and oocyte source on outcomes. Reprod Biol Endocrinol 15:10

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  52. ESHRE Working Group on Oocyte Cryopreservation in Europe, Shenfield F, de Mouzon J, Scaravelli G, Kupka M, Ferraretti AP, Prados FJ, Goossens V (2017) Oocyte and ovarian tissue cryopreservation in European countries: statutory background, practice, storage and use. Hum Reprod Open 2017:hox003

    Article  Google Scholar 

  53. Kuwayama M, Vajta G, Kato O, Leibo SP (2005) Highly efficient vitrification method for cryopreservation of human oocytes. Reprod Biomed Online 11:300–308

    Article  PubMed  Google Scholar 

  54. Kuwayama M (2007) Highly efficient vitrification for cryopreservation of human oocytes and embryos: the Cryotop method. Theriogenology 67:73–80

    Article  CAS  PubMed  Google Scholar 

  55. Cao YX, Xing Q, Li L, Cong L, Zhang ZG, Wei ZL, Zhou P (2009) Comparison of survival and embryonic development in human oocytes cryopreserved by slow-freezing and vitrification. Fertil Steril 92:1306–1311

    Article  CAS  PubMed  Google Scholar 

  56. Fadini R, Brambillasca F, Renzini MM, Merola M, Comi R, De Ponti E, Dal Canto MB (2009) Human oocyte cryopreservation: comparison between slow and ultrarapid methods. Reprod Biomed Online 19:171–180

    Article  CAS  PubMed  Google Scholar 

  57. Edgar DH, Gook DA (2012) A critical appraisal of cryopreservation (slow cooling versus vitrification) of human oocytes and embryos. Hum Reprod Update 18:536–554

    Article  PubMed  Google Scholar 

  58. Noyes N, Knopman J, Labella P, McCaffrey C, Clark-Williams M, Grifo J (2010) Oocyte cryopreservation outcomes including pre-cryopreservation and post-thaw meiotic spindle evaluation following slow cooling and vitrification of human oocytes. Fertil Steril 94:2078–2082

    Article  PubMed  Google Scholar 

  59. Cobo A, Diaz C (2012) Clinical application of oocyte vitrification: a systematic review and meta-analysis of randomized controlled trials. Fertil Steril 96:277–285

    Article  Google Scholar 

  60. Cobo A, Coello A, Remohí J, Serrano J, de Los Santos JM, Meseguer M (2017) Effect of oocyte vitrification on embryo quality: time-lapse analysis and morphokinetic evaluation. Fertil Steril 108:491–497.e3

    Article  PubMed  Google Scholar 

  61. Rienzi L, Gracia C, Maggiulli R, LaBarbera AR, Kaser DJ, Ubaldi FM, Vanderpoel S, Racowsky C (2017) Oocyte, embryo and blastocyst cryopreservation in ART: systematic review and meta-analysis comparing slow-freezing versus vitrification to produce evidence for the development of global guidance. Hum Reprod Update 23:139–155

    CAS  PubMed  Google Scholar 

  62. Paynter SJ (2000) Current status of the cryopreservation of human unfertilised oocytes. Hum Reprod Update 6:449–456

    Article  CAS  PubMed  Google Scholar 

  63. Fabbri R, Porcu E, Marsella T, Rocchetta G, Venturoli S, Flamigni C (2001) Human oocyte cryopreservation: new perspectives regarding oocyte survival. Hum Reprod 16:411–416

    Article  CAS  PubMed  Google Scholar 

  64. Paynter SJ, Borini A, Bianchi V, De Santis L, Flamigni C, Coticchio G (2005) Volume changes of mature human oocytes on exposure to cryoprotectant solutions used in slow cooling procedures. Hum Reprod 20:1194–1199

    Article  CAS  PubMed  Google Scholar 

  65. Stachecki JJ, Cohen J, Willadsen SM (1998) Cryopreservation of unfertilized mouse oocytes: the effect of replacing sodium with choline in the freezing medium. Cryobiology 37:346–354

    Article  CAS  PubMed  Google Scholar 

  66. Quintans CJ, Donaldson MJ, Bertolino MV, Pasqualini RS (2002) Birth of two babies using oocytes that were cryopreserved in a choline-based freezing medium. Hum Reprod 17:3149–3152

    Article  CAS  PubMed  Google Scholar 

  67. Fahy GM, Wowk B, Wu J, Paynter SJ (2004) Improved vitrification solutions based on the predictability of vitrification solution toxicity. Cryobiology 48:22–35

    Article  CAS  PubMed  Google Scholar 

  68. Robles V, Valcarce DG, Riesco MF (2019) The use of antifreeze proteins in the cryopreservation of gametes and embryos. Biomol Ther 9:181

    CAS  Google Scholar 

  69. Shaw PW, Bernard AG, Fuller BJ et al (1992) Vitrification of mouse oocytes using short cryoprotectant exposure: effects of varying exposure times on survival. Mol Reprod Dev 33:210–214

    Article  CAS  PubMed  Google Scholar 

  70. O’Neil L, Paynter SJ, Fuller BJ, Shaw RW (1997) Vitrification of mature mouse oocytes: improved results following addition of polyethylene glycol to a dimethyl sulfoxide solution. Cryobiology 34:295–301

    Article  PubMed  Google Scholar 

  71. O’Neil L, Paynter SJ, Fuller BJ, Shaw RW (1999) Birth of live young from mouse oocytes vitrified in 6 M dimethyl sulfoxide supplemented with 1 mg/ml polyethylene glycol. Cryobiology 39:284

    Google Scholar 

  72. Kohaya N, Fujiwara K, Ito J, Kashiwazaki N (2011) High developmental rates of mouse oocytes cryopreserved by an optimized vitrification protocol: the effects of cryoprotectants, calcium and cumulus cells. J Reprod Dev 57:675–680

    Article  CAS  PubMed  Google Scholar 

  73. Watanabe H, Kohaya N, Kamoshita M et al (2013) Efficient production of live offspring from mouse oocytes vitrified with a novel cryoprotective agent, carboxylated ε-poly-L-lysine. PLoS One 8:e83613

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  74. De Munck N, Verheyen G, Van Landuyt L, Stoop D, Van de Velde H (2013) Survival and post-warming in vitro competence of human oocytes after high security closed system vitrification. J Assist Reprod Genet 30:361–359

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We would like to gratefully acknowledge the significant role played by Dr. Sharon Paynter, who as a collaborator over many years developed the practical aspects of the two methods described in this chapter.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Victoria Keros .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Keros, V., Fuller, B.J. (2021). Cryopreservation of Mammalian Oocytes: Slow Cooling and Vitrification as Successful Methods for Cryogenic Storage. In: Wolkers, W.F., Oldenhof, H. (eds) Cryopreservation and Freeze-Drying Protocols. Methods in Molecular Biology, vol 2180. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-0783-1_20

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-0783-1_20

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-0782-4

  • Online ISBN: 978-1-0716-0783-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics