Skip to main content

Mathematical Modeling of Plasticity and Heterogeneity in EMT

  • Protocol
  • First Online:
The Epithelial-to Mesenchymal Transition

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2179))

Abstract

The epithelial-mesenchymal transition (EMT) and the corresponding reverse process, mesenchymal-epithelial transition (MET), are dynamic and reversible cellular programs orchestrated by many changes at both biochemical and morphological levels. A recent surge in identifying the molecular mechanisms underlying EMT/MET has led to the development of various mathematical models that have contributed to our improved understanding of dynamics at single-cell and population levels: (a) multi-stability—how many phenotypes can cells attain during an EMT/MET?, (b) reversibility/irreversibility—what time and/or concentration of an EMT inducer marks the “tipping point” when cells induced to undergo EMT cannot revert?, (c) symmetry in EMT/MET—do cells take the same path when reverting as they took during the induction of EMT?, and (d) non-cell autonomous mechanisms—how does a cell undergoing EMT alter the tendency of its neighbors to undergo EMT? These dynamical traits may facilitate a heterogenous response within a cell population undergoing EMT/MET. Here, we present a few examples of designing different mathematical models that can contribute to decoding EMT/MET dynamics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Jolly MK, Ware KE, Gilja S et al (2017) EMT and MET: necessary or permissive for metastasis? Mol Oncol 11:755–769. https://doi.org/10.1002/1878-0261.12083

    Article  PubMed  PubMed Central  Google Scholar 

  2. Aiello NM, Kang Y (2019) Context-dependent EMT programs in cancer metastasis. J Exp Med 216:1016–1026. https://doi.org/10.1084/jem.20181827

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Kumar S, Das A, Sen S (2014) Extracellular matrix density promotes EMT by weakening cell–cell adhesions. Mol BioSyst 10:838–850. https://doi.org/10.1039/C3MB70431A

    Article  CAS  PubMed  Google Scholar 

  4. Boareto M, Jolly MK, Goldman A et al (2016) Notch-Jagged signalling can give rise to clusters of cells exhibiting a hybrid epithelial/mesenchymal phenotype. J R Soc Interface 13. https://doi.org/10.1098/rsif.2015.1106

  5. Li X, Jolly MK, George JT et al (2019) Computational modeling of the crosstalk between macrophage polarization and tumor cell plasticity in the tumor microenvironment. Front Oncol 9:10. https://doi.org/10.3389/fonc.2019.00010

    Article  PubMed  PubMed Central  Google Scholar 

  6. Grosse-Wilde A, Kuestner RE, Skelton SM et al (2018) Loss of inter-cellular cooperation by complete epithelial-mesenchymal transition supports favorable outcomes in basal breast cancer patients. Oncotarget 9:20018–20033. https://doi.org/10.18632/oncotarget.25034

    Article  PubMed  PubMed Central  Google Scholar 

  7. Neelakantan D, Zhou H, Oliphant MUJ et al (2017) EMT cells increase breast cancer metastasis via paracrine GLI activation in neighbouring tumour cells. Nat Commun 8:15773. https://doi.org/10.1038/ncomms15773

    Article  PubMed  PubMed Central  Google Scholar 

  8. Nieto MA, Huang RY-J, Jackson RA, Thiery JP (2016) EMT: 2016. Cell 166:21–45. https://doi.org/10.1016/j.cell.2016.06.028

    Article  CAS  Google Scholar 

  9. Lu M, Jolly MK, Levine H et al (2013) MicroRNA-based regulation of epithelial–hybrid–mesenchymal fate determination. Proc Natl Acad Sci 110:18144–18149. https://doi.org/10.1073/pnas.1318192110

    Article  PubMed  Google Scholar 

  10. Font-Clos F, Zapperi S, La Porta CAM (2018) Topography of epithelial–mesenchymal plasticity. Proc Natl Acad Sci 115:5902–5907. https://doi.org/10.1073/pnas.1722609115

    Article  CAS  PubMed  Google Scholar 

  11. Steinway SN, Zanudo JGT, Ding W et al (2014) Network modeling of TGF signaling in hepatocellular carcinoma epithelial-to-mesenchymal transition reveals joint sonic hedgehog and Wnt pathway activation. Cancer Res 74:5963–5977. https://doi.org/10.1158/0008-5472.CAN-14-0225

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Celià-Terrassa T, Bastian C, Liu D et al (2018) Hysteresis control of epithelial-mesenchymal transition dynamics conveys a distinct program with enhanced metastatic ability. Nat Commun 9:5005. https://doi.org/10.1038/s41467-018-07538-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Tian X-J, Zhang H, Xing J (2013) Coupled reversible and irreversible bistable switches underlying TGFβ-induced epithelial to mesenchymal transition. Biophys J 105:1079–1089. https://doi.org/10.1016/j.bpj.2013.07.011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Hong T, Watanabe K, Ta CH et al (2015) An Ovol2-Zeb1 mutual inhibitory circuit governs bidirectional and multi-step transition between epithelial and mesenchymal states. PLoS Comput Biol 11:e1004569. https://doi.org/10.1371/journal.pcbi.1004569

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Jolly MK, Levine H (2017) Computational systems biology of epithelial-hybrid-mesenchymal transitions. Curr Opin Syst Biol 3:1–6. https://doi.org/10.1016/j.coisb.2017.02.004

    Article  CAS  Google Scholar 

  16. Pastushenko I, Brisebarre A, Sifrim A et al (2018) Identification of the tumour transition states occurring during EMT. Nature 556:463–468. https://doi.org/10.1038/s41586-018-0040-3

    Article  CAS  Google Scholar 

  17. Ruscetti M, Dadashian EL, Guo W et al (2016) HDAC inhibition impedes epithelial-mesenchymal plasticity and suppresses metastatic, castration-resistant prostate cancer. Oncogene 35:3781–3795. https://doi.org/10.1038/onc.2015.444

    Article  CAS  PubMed  Google Scholar 

  18. Karacosta LG, Anchang B, Ignatiadis N, et al (2019) Mapping lung cancer epithelial-mesenchymal transition states and trajectories with single-cell resolution. bioRxiv 570341. https://doi.org/10.1101/570341

  19. Jolly MK, Huang B, Lu M et al (2014) Towards elucidating the connection between epithelial-mesenchymal transitions and stemness. J R Soc Interface 11:20140962. https://doi.org/10.1098/rsif.2014.0962

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Grosse-Wilde A, d’Hérouël AF, McIntosh E et al (2015) Stemness of the hybrid epithelial/mesenchymal state in breast cancer and its association with poor survival. PLoS One 10:e0126522. https://doi.org/10.1371/journal.pone.0126522

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Kröger C, Afeyan A, Mraz J et al (2019) Acquisition of a hybrid E/M state is essential for tumorigenicity of basal breast cancer cells. Proc Natl Acad Sci 116:7353–7362. https://doi.org/10.1073/pnas.1812876116

    Article  CAS  PubMed  Google Scholar 

  22. Bierie B, Pierce SE, Kroeger C et al (2017) Integrin-β4 identifies cancer stem cell-enriched populations of partially mesenchymal carcinoma cells. Proc Natl Acad Sci 114:E2337–E2346. https://doi.org/10.1073/pnas.1618298114

    Article  CAS  PubMed  Google Scholar 

  23. Drubin DG, Oster G (2010) Experimentalist meets theoretician: a tale of two scientific cultures. Mol Biol Cell 21:2099–2101. https://doi.org/10.1091/mbc.e10-02-0143

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Igoshin O, Chen J, Xing J et al (2019) Biophysics at the coffee shop: lessons learned working with George Oster. Mol Biol Cell 30(16):1882

    Article  CAS  Google Scholar 

  25. Albert R, Thakar J (2014) Boolean modeling: a logic-based dynamic approach for understanding signaling and regulatory networks and for making useful predictions. Wiley Interdiscip Rev Syst Biol Med 6:353–369. https://doi.org/10.1002/wsbm.1273

    Article  CAS  PubMed  Google Scholar 

  26. Zhang J, Tian X-J, Chen Y-J et al (2018) Pathway crosstalk enables cells to interpret TGF-β duration. NPJ Syst Biol Appl 4:18. https://doi.org/10.1038/s41540-018-0060-5

    Article  PubMed  PubMed Central  Google Scholar 

  27. Blagoev KB, Shukla K, Levine H (2013) We need theoretical physics approaches to study living systems. Phys Biol 10:040201. https://doi.org/10.1088/1478-3975/10/4/040201

    Article  PubMed  Google Scholar 

  28. Zhang J, Tian X-J, Zhang H et al (2014) TGF-β–induced epithelial-to-mesenchymal transition proceeds through stepwise activation of multiple feedback loops. Sci Signal 7:ra91. https://doi.org/10.1126/scisignal.2005304

    Article  CAS  PubMed  Google Scholar 

  29. Bustin SA, Huggett JF (2017) Reproducibility of biomedical research – the importance of editorial vigilance. Biomol Detect Quantif 11:1–3. https://doi.org/10.1016/j.bdq.2017.01.002

    Article  PubMed  PubMed Central  Google Scholar 

  30. Fu Y, Glaros T, Zhu M et al (2012) Network topologies and dynamics leading to endotoxin tolerance and priming in innate immune cells. PLoS Comput Biol 8:1–14. https://doi.org/10.1371/journal.pcbi.1002526

    Article  CAS  Google Scholar 

  31. Wang P, Song C, Zhang H et al (2014) Epigenetic state network approach for describing cell phenotypic transitions. Interface Focus 4:20130068. https://doi.org/10.1098/rsfs.2013.0068

    Article  PubMed  PubMed Central  Google Scholar 

  32. Harris LA, Hogg JS, Tapia J-J et al (2016) BioNetGen 2.2: advances in rule-based modeling. Bioinformatics 32:3366–3368. https://doi.org/10.1093/bioinformatics/btw469

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Box GEP (1976) Science and statistics. J Am Stat Assoc 71:791–799. https://doi.org/10.1080/01621459.1976.10480949

    Article  Google Scholar 

  34. Jolly MK, Tripathi SC, Jia D et al (2016) Stability of the hybrid epithelial/mesenchymal phenotype. Oncotarget 7:27067–27084. https://doi.org/10.18632/oncotarget.8166

    Article  PubMed  PubMed Central  Google Scholar 

  35. Jolly MK, Preca B-T, Tripathi SC et al (2018) Interconnected feedback loops among ESRP1, HAS2, and CD44 regulate epithelial-mesenchymal plasticity in cancer. APL Bioeng 2:031908. https://doi.org/10.1063/1.5024874

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Meacham CE, Morrison SJ (2013) Tumour heterogeneity and cancer cell plasticity. Nature 501:328–337. https://doi.org/10.1038/nature12624

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Lapidot T, Sirard C, Vormoor J et al (1994) A cell initiating human acute myeloid leukaemia after transplantation into SCID mice. Nature 367:645–648. https://doi.org/10.1038/367645a0

    Article  CAS  PubMed  Google Scholar 

  38. Al-Hajj M, Wicha MS, Benito-Hernandez A et al (2003) Prospective identification of tumorigenic breast cancer cells. Proc Natl Acad Sci 100:3983–3988. https://doi.org/10.1073/pnas.0530291100

    Article  CAS  PubMed  Google Scholar 

  39. O’Brien CA, Pollett A, Gallinger S, Dick JE (2007) A human colon cancer cell capable of initiating tumour growth in immunodeficient mice. Nature 445:106–110. https://doi.org/10.1038/nature05372

    Article  CAS  Google Scholar 

  40. Ricci-Vitiani L, Lombardi DG, Pilozzi E et al (2007) Identification and expansion of human colon-cancer-initiating cells. Nature 445:111–115. https://doi.org/10.1038/nature05384

    Article  CAS  Google Scholar 

  41. Singh SK, Hawkins C, Clarke ID et al (2004) Identification of human brain tumour initiating cells. Nature 432:396–401. https://doi.org/10.1038/nature03128

    Article  CAS  PubMed  Google Scholar 

  42. Collins AT, Berry PA, Hyde C et al (2005) Prospective identification of tumorigenic prostate cancer stem cells. Cancer Res 65:10946–10951. https://doi.org/10.1158/0008-5472.CAN-05-2018

    Article  CAS  Google Scholar 

  43. Lehmann BD, Bauer JA, Chen X et al (2011) Identification of human triple-negative breast cancer subtypes and preclinical models for selection of targeted therapies. J Clin Invest 121:2750–2767. https://doi.org/10.1172/JCI45014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Calbo J, van Montfort E, Proost N et al (2011) A functional role for tumor cell heterogeneity in a mouse model of small cell lung cancer. Cancer Cell 19:244–256. https://doi.org/10.1016/j.ccr.2010.12.021

    Article  CAS  PubMed  Google Scholar 

  45. Stanta G, Bonin S (2018) Overview on clinical relevance of intra-tumor heterogeneity. Front Med 5:85. https://doi.org/10.3389/fmed.2018.00085

    Article  Google Scholar 

  46. Hong D, Fritz AJ, Zaidi SK et al (2018) Epithelial-to-mesenchymal transition and cancer stem cells contribute to breast cancer heterogeneity. J Cell Physiol 233:9136–9144. https://doi.org/10.1002/jcp.26847

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Kim JE, Leung EY, Baguley BC, Finlay GJ (2013) Heterogeneity of expression of epithelial–mesenchymal transition markers in melanocytes and melanoma cell lines. Front Genet 4:97. https://doi.org/10.3389/fgene.2013.00097

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Pereira L, Mariadason JM, Hannan RD, Dhillon AS (2015) Implications of epithelial–mesenchymal plasticity for heterogeneity in colorectal cancer. Front Oncol 5:13. https://doi.org/10.3389/fonc.2015.00013

    Article  PubMed  PubMed Central  Google Scholar 

  49. Stylianou N, Lehman ML, Wang C et al (2018) A molecular portrait of epithelial–mesenchymal plasticity in prostate cancer associated with clinical outcome. Oncogene 38:913–934. https://doi.org/10.1038/s41388-018-0488-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Creighton CJ, Li X, Landis M et al (2009) Residual breast cancers after conventional therapy display mesenchymal as well as tumor-initiating features. Proc Natl Acad Sci 106:13820–13825. https://doi.org/10.1073/pnas.0905718106

    Article  PubMed  Google Scholar 

  51. Tièche CC, Gao Y, Bührer ED et al (2018) Tumor initiation capacity and therapy resistance are differential features of EMT-related subpopulations in the NSCLC cell line A549. Neoplasia 21:185–196. https://doi.org/10.1016/j.neo.2018.09.008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Balaban NQ, Merrin J, Chait R et al (2004) Bacterial persistence as a phenotypic switch. Science 305:1622–1625. https://doi.org/10.1126/science.1099390

    Article  CAS  PubMed  Google Scholar 

  53. Huh D, Paulsson J (2011) Random partitioning of molecules at cell division. Proc Natl Acad Sci U S A 108:15004–15009. https://doi.org/10.1073/pnas.1013171108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Huh D, Paulsson J (2011) Non-genetic heterogeneity from stochastic partitioning at cell division. Nat Genet 43:95–100. https://doi.org/10.1038/ng.729

    Article  CAS  PubMed  Google Scholar 

  55. Boyer LA, Lee TI, Cole MF et al (2005) Core transcriptional regulatory circuitry in human embryonic stem cells. Cell 122:947–956. https://doi.org/10.1016/j.cell.2005.08.020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Moignard V, Macaulay IC, Swiers G et al (2013) Characterization of transcriptional networks in blood stem and progenitor cells using high-throughput single-cell gene expression analysis. Nat Cell Biol 15:363–372. https://doi.org/10.1038/ncb2709

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Yan J, Wang H, Liu Y, Shao C (2008) Analysis of gene regulatory networks in the mammalian circadian rhythm. PLoS Comput Biol 4:e1000193. https://doi.org/10.1371/journal.pcbi.1000193

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Zhang R, Lahens NF, Ballance HI et al (2014) A circadian gene expression atlas in mammals: implications for biology and medicine. Proc Natl Acad Sci U S A 111:16219–16224. https://doi.org/10.1073/pnas.1408886111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Milo R, Shen-Orr S, Itzkovitz S et al (2002) Network motifs: simple building blocks of complex networks. Science 298:824–827. https://doi.org/10.1126/science.298.5594.824

    Article  CAS  PubMed  Google Scholar 

  60. Huang B, Lu M, Jia D et al (2017) Interrogating the topological robustness of gene regulatory circuits by randomization. PLoS Comput Biol 13:e1005456. https://doi.org/10.1371/journal.pcbi.1005456

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Lamouille S, Xu J, Derynck R (2014) Molecular mechanisms of epithelial–mesenchymal transition. Nat Rev Mol Cell Biol 15:178–196. https://doi.org/10.1038/nrm3758

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Jia D, George JT, Tripathi SC et al (2019) Testing the gene expression classification of the EMT spectrum. Phys Biol 16:025002. https://doi.org/10.1088/1478-3975/aaf8d4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Losick R, Desplan C (2008) Stochasticity and cell fate. Science 320:65–68. https://doi.org/10.1126/science.1147888

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Soltani M, Vargas-Garcia CA, Antunes D, Singh A (2016) Intercellular variability in protein levels from stochastic expression and noisy cell cycle processes. PLoS Comput Biol 12:e1004972. https://doi.org/10.1371/journal.pcbi.1004972

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Tripathi S, Chakraborty P, Levine H, Jolly MK (2020) A mechanism for epithelial-mesenchymal heterogeneity in a population of cancer cells. PLoS Comput Biol 16(2):e1007619.

    Google Scholar 

  66. Gillespie DT (1977) Exact stochastic simulation of coupled chemical reactions. J Phys Chem 81:2340–2361. https://doi.org/10.1021/j100540a008

    Article  CAS  Google Scholar 

  67. Lovisa S, LeBleu VS, Tampe B et al (2015) Epithelial-to-mesenchymal transition induces cell cycle arrest and parenchymal damage in renal fibrosis. Nat Med 21:998–1009. https://doi.org/10.1038/nm.3902

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Vega S, Morales AV, Ocaña OH et al (2004) Snail blocks the cell cycle and confers resistance to cell death. Genes Dev 18:1131–1143. https://doi.org/10.1101/gad.294104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Handler J, Cullis J, Avanzi A et al (2018) Pre-neoplastic pancreas cells enter a partially mesenchymal state following transient TGF-β exposure. Oncogene 37:4334. https://doi.org/10.1038/s41388-018-0264-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Bray SJ (2016) Notch signalling in context. Nat Rev Mol Cell Biol 17:722–735. https://doi.org/10.1038/nrm.2016.94

    Article  CAS  PubMed  Google Scholar 

  71. Siebel C, Lendahl U (2017) Notch signaling in development, tissue homeostasis, and disease. Physiol Rev 97:1235–1294. https://doi.org/10.1152/physrev.00005.2017

    Article  CAS  PubMed  Google Scholar 

  72. Shaya O, Sprinzak D (2011) From notch signaling to fine-grained patterning: modeling meets experiments. Curr Opin Genet Dev 21:732–739. https://doi.org/10.1016/j.gde.2011.07.007

    Article  CAS  PubMed  Google Scholar 

  73. Boareto M, Jolly MK, Lu M et al (2015) Jagged–Delta asymmetry in notch signaling can give rise to a sender/receiver hybrid phenotype. Proc Natl Acad Sci 112:E402–E409. https://doi.org/10.1073/pnas.1416287112

    Article  CAS  PubMed  Google Scholar 

  74. Yuan Y (2016) Spatial heterogeneity in the tumor microenvironment. Cold Spring Harb Perspect Med 6:a026583. https://doi.org/10.1101/cshperspect.a026583

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Liu S, Cong Y, Wang D et al (2014) Breast cancer stem cells transition between epithelial and mesenchymal states reflective of their normal counterparts. Stem Cell Rep 2:78–91. https://doi.org/10.1016/j.stemcr.2013.11.009

    Article  CAS  Google Scholar 

  76. Bocci F, Gearhart-Serna L, Boareto M et al (2019) Toward understanding cancer stem cell heterogeneity in the tumor microenvironment. Proc Natl Acad Sci 116:148–157. https://doi.org/10.1073/pnas.1815345116

    Article  CAS  PubMed  Google Scholar 

  77. Nassar D, Blanpain C (2016) Cancer stem cells: basic concepts and therapeutic implications. Annu Rev Pathol Mech Dis 11:47–76. https://doi.org/10.1146/annurev-pathol-012615-044438

    Article  CAS  Google Scholar 

  78. Mani SA, Guo W, Liao M-J et al (2008) The epithelial-mesenchymal transition generates cells with properties of stem cells. Cell 133:704–715. https://doi.org/10.1016/j.cell.2008.03.027

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Morel A-P, Lièvre M, Thomas C et al (2008) Generation of breast cancer stem cells through epithelial-mesenchymal transition. PLoS One 3:e2888. https://doi.org/10.1371/journal.pone.0002888

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Iliopoulos D, Hirsch HA, Wang G, Struhl K (2011) Inducible formation of breast cancer stem cells and their dynamic equilibrium with non-stem cancer cells via IL6 secretion. Proc Natl Acad Sci 108:1397–1402. https://doi.org/10.1073/pnas.1018898108

    Article  PubMed  Google Scholar 

  81. Yang G, Quan Y, Wang W et al (2012) Dynamic equilibrium between cancer stem cells and non-stem cancer cells in human SW620 and MCF-7 cancer cell populations. Br J Cancer 106:1512–1519. https://doi.org/10.1038/bjc.2012.126

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Wang W, Quan Y, Fu Q et al (2014) Dynamics between cancer cell subpopulations reveals a model coordinating with both hierarchical and stochastic concepts. PLoS One 9:e84654. https://doi.org/10.1371/journal.pone.0084654

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Gupta PB, Fillmore CM, Jiang G et al (2011) Stochastic state transitions give rise to phenotypic equilibrium in populations of cancer cells. Cell 146:633–644. https://doi.org/10.1016/j.cell.2011.07.026

    Article  CAS  PubMed  Google Scholar 

  84. Qiu C, Ma Y, Wang J et al (2010) Lin28-mediated post-transcriptional regulation of Oct4 expression in human embryonic stem cells. Nucleic Acids Res 38:1240–1248. https://doi.org/10.1093/nar/gkp1071

    Article  CAS  PubMed  Google Scholar 

  85. Niwa H, Miyazaki J, Smith AG (2000) Quantitative expression of Oct-3/4 defines differentiation, dedifferentiation or self-renewal of ES cells. Nat Genet 24:372–376. https://doi.org/10.1038/74199

    Article  CAS  Google Scholar 

  86. Karwacki-Neisius V, Göke J, Osorno R et al (2013) Reduced Oct4 expression directs a robust pluripotent state with distinct signaling activity and increased enhancer occupancy by Oct4 and Nanog. Cell Stem Cell 12:531–545. https://doi.org/10.1016/j.stem.2013.04.023

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Shu J, Wu C, Wu Y et al (2013) Induction of pluripotency in mouse somatic cells with lineage specifiers. Cell 153:963–975. https://doi.org/10.1016/j.cell.2013.05.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Theunissen TW, van Oosten AL, Castelo-Branco G et al (2011) Nanog overcomes reprogramming barriers and induces pluripotency in minimal conditions. Curr Biol 21:65–71. https://doi.org/10.1016/j.cub.2010.11.074

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Jolly MK, Jia D, Boareto M et al (2015) Coupling the modules of EMT and stemness: a tunable “stemness window” model. Oncotarget 6:25161–25174. https://doi.org/10.18632/oncotarget.4629

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Science Foundation grant PHY- 1427654 and by the Ramanujan Fellowship awarded to M.K.J. by SERB, DST, Government of India (SB/S2/RJN-049/2018).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jianhua Xing , Herbert Levine or Mohit Kumar Jolly .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Tripathi, S., Xing, J., Levine, H., Jolly, M.K. (2021). Mathematical Modeling of Plasticity and Heterogeneity in EMT. In: Campbell, K., Theveneau, E. (eds) The Epithelial-to Mesenchymal Transition. Methods in Molecular Biology, vol 2179. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-0779-4_28

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-0779-4_28

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-0778-7

  • Online ISBN: 978-1-0716-0779-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics