Skip to main content

Methods for the Study of Long Noncoding RNA in Cancer Cell Signaling

  • Protocol
  • First Online:
Book cover Cancer Cell Signaling

Abstract

With the advances in sequencing technology and transcriptome analysis, it is estimated that up to 75% of the human genome is transcribed into RNAs. This finding prompted intensive investigations on the biological functions of noncoding RNAs and led to very exciting discoveries of microRNAs as important players in disease pathogenesis and therapeutic applications. Research on long noncoding RNAs (lncRNAs) is in its infancy, yet a broad spectrum of biological regulations has been attributed to lncRNAs. Here, we provide a collection of detailed experimental protocols for lncRNA studies, including lncRNA immunoprecipitation, lncRNA pull-down, lncRNA northern blot analysis, lncRNA in situ hybridization, and lncRNA knockdown. We hope that the information included in this chapter can speed up research on lncRNAs biology and eventually lead to the development of clinical applications with lncRNA as novel prognostic markers and therapeutic targets.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hanahan D, Weinberg RA (2011) Hallmarks of cancer: the next generation. Cell 144:646–674

    Article  CAS  PubMed  Google Scholar 

  2. International Human Genome Sequencing, C (2004) Finishing the euchromatic sequence of the human genome. Nature 431:931–945

    Article  CAS  Google Scholar 

  3. Djebali S, Davis CA, Merkel A et al (2012) Landscape of transcription in human cells. Nature 489:101–108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Rinn JL, Chang HY (2012) Genome regulation by long noncoding RNAs. Annu Rev Biochem 81:145–166

    Article  CAS  PubMed  Google Scholar 

  5. Lee JT (2012) Epigenetic regulation by long noncoding RNAs. Science 338:1435–1439

    Article  CAS  PubMed  Google Scholar 

  6. Prensner JR, Chinnaiyan AM (2011) The emergence of lncRNAs in cancer biology. Cancer Discov 1:391–407

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Guttman M, Rinn JL (2012) Modular regulatory principles of large non-coding RNAs. Nature 482:339–346

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Spizzo R, Almeida MI, Colombatti A et al (2012) Long non-coding RNAs and cancer: a new frontier of translational research? Oncogene 31:4577–4587

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Pachnis V, Brannan CI, Tilghman SM (1988) The structure and expression of a novel gene activated in early mouse embryogenesis. EMBO J 7:673–681

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Bartolomei MS, Zemel S, Tilghman SM (1991) Parental imprinting of the mouse H19 gene. Nature 351:153–155

    Article  CAS  PubMed  Google Scholar 

  11. Brown CJ, Ballabio A, Rupert JL et al (1991) A gene from the region of the human X inactivation centre is expressed exclusively from the inactive X chromosome. Nature 349:38–44

    Article  CAS  PubMed  Google Scholar 

  12. Kapranov P, Cawley SE, Drenkow J et al (2002) Large-scale transcriptional activity in chromosomes 21 and 22. Science 296:916–919

    Article  CAS  PubMed  Google Scholar 

  13. Rinn JL, Euskirchen G, Bertone P et al (2003) The transcriptional activity of human chromosome 22. Genes Dev 17:529–540

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Rinn JL, Kertesz M, Wang JK et al (2007) Functional demarcation of active and silent chromatin domains in human HOX loci by noncoding RNAs. Cell 129:1311–1323

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Gupta RA, Shah N, Wang KC et al (2010) Long non-coding RNA HOTAIR reprograms chromatin state to promote cancer metastasis. Nature 464:1071–1076

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Guttman M, Amit I, Garber M et al (2009) Chromatin signature reveals over a thousand highly conserved large non-coding RNAs in mammals. Nature 458:223–227

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Khalil AM, Guttman M, Huarte M et al (2009) Many human large intergenic noncoding RNAs associate with chromatin-modifying complexes and affect gene expression. Proc Natl Acad Sci U S A 106:11667–11672

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Maeda N, Kasukawa T, Oyama R et al (2006) Transcript annotation in FANTOM3: mouse gene catalog based on physical cDNAs. PLoS Genet 2:e62

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Jia H, Osak M, Bogu GK et al (2010) Genome-wide computational identification and manual annotation of human long noncoding RNA genes. RNA 16:1478–1487

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Orom UA, Derrien T, Beringer M et al (2010) Long noncoding RNAs with enhancer-like function in human cells. Cell 143:46–58

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Prensner JR, Iyer MK, Balbin OA et al (2011) Transcriptome sequencing across a prostate cancer cohort identifies PCAT-1, an unannotated lincRNA implicated in disease progression. Nat Biotechnol 29:742–749

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Cabili MN, Trapnell C, Goff L et al (2011) Integrative annotation of human large intergenic noncoding RNAs reveals global properties and specific subclasses. Genes Dev 25:1915–1927

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Derrien T, Johnson R, Bussotti G et al (2012) The GENCODE v7 catalog of human long noncoding RNAs: analysis of their gene structure, evolution, and expression. Genome Res 22:1775–1789

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Brown CJ, Hendrich BD, Rupert JL et al (1992) The human XIST gene: analysis of a 17 kb inactive X-specific RNA that contains conserved repeats and is highly localized within the nucleus. Cell 71:527–542

    Article  CAS  PubMed  Google Scholar 

  25. Zhao J, Sun BK, Erwin JA et al (2008) Polycomb proteins targeted by a short repeat RNA to the mouse X chromosome. Science 322:750–756

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Jeon Y, Lee JT (2011) YY1 tethers Xist RNA to the inactive X nucleation center. Cell 146:119–133

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Tsai MC, Manor O, Wan Y et al (2010) Long noncoding RNA as modular scaffold of histone modification complexes. Science 329:689–693

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Yap KL, Li S, Munoz-Cabello AM et al (2010) Molecular interplay of the noncoding RNA ANRIL and methylated histone H3 lysine 27 by polycomb CBX7 in transcriptional silencing of INK4a. Mol Cell 38:662–674

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Kotake Y, Nakagawa T, Kitagawa K et al (2011) Long non-coding RNA ANRIL is required for the PRC2 recruitment to and silencing of p15(INK4B) tumor suppressor gene. Oncogene 30:1956–1962

    Article  CAS  PubMed  Google Scholar 

  30. Huarte M, Guttman M, Feldser D et al (2010) A large intergenic noncoding RNA induced by p53 mediates global gene repression in the p53 response. Cell 142:409–419

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Grote P, Wittler L, Hendrix D et al (2013) The tissue-specific lncRNA Fendrr is an essential regulator of heart and body wall development in the mouse. Dev Cell 24:206–214

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Kino T, Hurt DE, Ichijo T et al (2010) Noncoding RNA gas5 is a growth arrest- and starvation-associated repressor of the glucocorticoid receptor. Sci Signal 3:ra8

    PubMed  PubMed Central  Google Scholar 

  33. Hung T, Wang Y, Lin MF et al (2011) Extensive and coordinated transcription of noncoding RNAs within cell-cycle promoters. Nat Genet 43:621–629

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Tripathi V, Ellis JD, Shen Z et al (2010) The nuclear-retained noncoding RNA MALAT1 regulates alternative splicing by modulating SR splicing factor phosphorylation. Mol Cell 39:925–938

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Bernard D, Prasanth KV, Tripathi V et al (2010) A long nuclear-retained non-coding RNA regulates synaptogenesis by modulating gene expression. EMBO J 29:3082–3093

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Tripathi V, Shen Z, Chakraborty A et al (2013) Long Noncoding RNA MALAT1 controls cell cycle progression by regulating the expression of oncogenic transcription factor B-MYB. PLoS Genet 9:e1003368

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Salmena L, Poliseno L, Tay Y et al (2011) A ceRNA hypothesis: the Rosetta Stone of a hidden RNA language? Cell 146:353–358

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Kim TK, Hemberg M, Gray JM et al (2010) Widespread transcription at neuronal activity-regulated enhancers. Nature 465:182–187

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Wang D, Garcia-Bassets I, Benner C et al (2011) Reprogramming transcription by distinct classes of enhancers functionally defined by eRNA. Nature 474:390–394

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Melo CA, Drost J, Wijchers PJ et al (2013) eRNAs are required for p53-dependent enhancer activity and gene transcription. Mol Cell 49:524–535

    Article  CAS  PubMed  Google Scholar 

  41. Lai F, Orom UA, Cesaroni M et al (2013) Activating RNAs associate with mediator to enhance chromatin architecture and transcription. Nature 494:497–501

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Yan X, Hu Z, Feng Y et al (2015) Comprehensive genomic characterization of long non-coding RNAs across human cancers. Cancer Cell 28:529–540

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Ji P, Diederichs S, Wang W et al (2003) MALAT-1, a novel noncoding RNA, and thymosin beta4 predict metastasis and survival in early-stage non-small cell lung cancer. Oncogene 22:8031–8041

    Article  PubMed  CAS  Google Scholar 

  44. Yang F, Huo XS, Yuan SX et al (2013) Repression of the long noncoding RNA-LET by histone deacetylase 3 contributes to hypoxia-mediated metastasis. Mol Cell 49:1083–1096

    Article  CAS  PubMed  Google Scholar 

  45. Hu X, Feng Y, Zhang D et al (2014) A functional genomic approach identifies FAL1 as an oncogenic long noncoding RNA that associates with BMI1 and represses p21 expression in cancer. Cancer Cell 26:344–357

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Loewer S, Cabili MN, Guttman M et al (2010) Large intergenic non-coding RNA-RoR modulates reprogramming of human induced pluripotent stem cells. Nat Genet 42:1113–1117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Guttman M, Donaghey J, Carey BW et al (2011) lincRNAs act in the circuitry controlling pluripotency and differentiation. Nature 477:295–300

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Kretz M, Siprashvili Z, Chu C et al (2013) Control of somatic tissue differentiation by the long non-coding RNA TINCR. Nature 493:231–235

    Article  CAS  PubMed  Google Scholar 

  49. Zhang A, Zhou N, Huang J et al (2013) The human long non-coding RNA-RoR is a p53 repressor in response to DNA damage. Cell Res 23:340–350

    Article  CAS  PubMed  Google Scholar 

  50. Pasmant E, Laurendeau I, Heron D et al (2007) Characterization of a germ-line deletion, including the entire INK4/ARF locus, in a melanoma-neural system tumor family: identification of ANRIL, an antisense noncoding RNA whose expression coclusters with ARF. Cancer Res 67:3963–3969

    Article  CAS  PubMed  Google Scholar 

  51. Yildirim E, Kirby JE, Brown DE et al (2013) Xist RNA is a potent suppressor of hematologic cancer in mice. Cell 152:727–742

    Article  CAS  PubMed  Google Scholar 

  52. Bussemakers MJ, van Bokhoven A, Verhaegh GW et al (1999) DD3: a new prostate-specific gene, highly overexpressed in prostate cancer. Cancer Res 59:5975–5979

    CAS  PubMed  Google Scholar 

  53. Lee GL, Dobi A, Srivastava S (2011) Prostate cancer: diagnostic performance of the PCA3 urine test. Nat Rev Urol 8:123–124

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported, in whole or in part, the US National Institutes of Health (R01CA225929 to LZ, R01CA142776 to LZ, R01CA190415 to LZ, P50CA083638 to LZ, P50CA174523 to LZ), the Breast Cancer Alliance (LZ), the Marsha Rivkin Center for Ovarian Cancer Research (LZ), the Harry Fields Professorship (LZ), the Kaleidoscope of Hope Ovarian Cancer Foundation (LZ), the Ovarian Cancer Research Fund Alliance (XH), and the Foundation for Women’s Cancer (XH and Z).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaowen Hu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Feng, Y. et al. (2021). Methods for the Study of Long Noncoding RNA in Cancer Cell Signaling. In: Robles-Flores, M. (eds) Cancer Cell Signaling. Methods in Molecular Biology, vol 2174. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-0759-6_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-0759-6_7

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-0758-9

  • Online ISBN: 978-1-0716-0759-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics