Skip to main content

A Biolistic-Mediated Virus-Induced Gene Silencing in Apocynaceae to Map Biosynthetic Pathways of Alkaloids

  • Protocol
  • First Online:
Virus-Induced Gene Silencing in Plants

Abstract

Monoterpene indole alkaloids (MIAs) are specialized metabolites synthesized in many plants of the Apocynaceae family including Catharanthus roseus and Rauvolfia sp. MIAs are part of the chemical arsenal that plants evolved to face pet and herbivore attacks, and their high biological activities also confer pharmaceutical properties exploited in human pharmacopeia. Developing robust and straightforward tools to elucidate each step of MIA biosynthetic pathways thus constitutes a prerequisite to the understanding of Apocynaceae defense mechanisms and to the exploitation of MIA cytotoxicity through their production by metabolic engineering. While protocols of virus-induced gene silencing (VIGS) based on Agrobacterium-based transformation have emerged, the recalcitrance of Apocynaceae to this type of transformation prompted us to develop an universal procedure of VIGS vector inoculation. Such procedure relies on the delivery of the transforming plasmids through a particle bombardment performed using a biolistic device and offers the possibility to overcome host specificity to silence genes in any plant species. Using silencing of geissoschizine oxidase as an example, we described the main steps of this biolistic mediated VIGS in C. roseus and R. tetraphylla.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Le Quesne PW (1999) Alkaloids: biochemistry, ecology, and medicinal applications edited by Margaret F. Roberts (University of London) and Michael Wink (University of Heidelberg). Plenum Press, New York, NY. J Nat Prod 62(4):664–664. https://doi.org/10.1021/np980259j

    Article  Google Scholar 

  2. Hinse C, Stöckigt J (2000) The structure of the ring-opened N beta-propyl-ajmaline (Neo-Gilurytmal) at physiological pH is obviously responsible for its better absorption and bioavailability when compared with ajmaline (Gilurytmal). Pharmazie 55(7):531–532. PMID: 10944783

    CAS  PubMed  Google Scholar 

  3. Ro D, Paradise EM, Ouellet M et al (2006) Production of the antimalarial drug precursor artemisinic acid in engineered yeast. Nature 440(7086):940–943. https://doi.org/10.1038/nature04640

    Article  CAS  PubMed  Google Scholar 

  4. Song MC, Kim EJ, Kim E et al (2014) Microbial biosynthesis of medicinally important plant secondary metabolites. Nat Prod Rep 31:1497–1509. https://doi.org/10.1039/c4np00057a

    Article  CAS  PubMed  Google Scholar 

  5. Galanie S, Thodey K, Trenchard IJ et al (2015) Complete biosynthesis of opioids in yeast. Science 349(6252):1095–1100. https://doi.org/10.1126/science.aac9373

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Saleki R, Young PG, Lefebvre DD (1993) Mutants of Arabidopsis thaliana capable of germination under saline conditions. Plant Physiol 101:839–845. https://doi.org/10.1104/pp.101.3.839

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Koiwa H, Bressan RA, Hasegawa PM (2006) Identification of plant stressresponsive determinants in Arabidopsis by large-scale forward genetic screens. J Exp Bot 57:1119–1128. https://doi.org/10.1093/jxb/erj093

    Article  CAS  PubMed  Google Scholar 

  8. Qu Y, Easson MEAM, Simionescu R et al (2018) Solution of the multistep pathway for assembly of corynanthean, strychnos, iboga, and aspidosperma monoterpenoid indole alkaloids from 19E-geissoschizine. Proc Natl Acad Sci U S A 115(12):3180–3185. https://doi.org/10.1073/pnas.1719979115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Williams D, Qu Y, Simionescu R et al (2019) The assembly of (+)-vincadifformine and (−)-tabersonine derived monoterpenoid indole alkaloids in Catharanthus roseus involve separate branch pathways. Plant J 99(4):626–636. https://doi.org/10.1111/tpj.14346

    Article  CAS  PubMed  Google Scholar 

  10. Guo Y, Halfter U, Ishitani M et al (2001) Molecular characterization of functional domains in the protein kinase SOS2 that is required for plant salt tolerance. Plant Cell 13:1383–1399. https://doi.org/10.1105/tpc.13.6.1383

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Burgos-Rivera B, Dawe RK (2012) An Arabidopsis tissue-specific RNAi method for studying genes essential to mitosis. PLoS One 7(12):e51388. https://doi.org/10.1371/journal.pone.0051388

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Ramegowda V, Mysore KS, Senthil-Kumar M (2014) Virus-induced gene silencing is a versatile tool for unraveling the functional relevance of multiple abiotic-stress-responsive genes in crop plants. Front Plant Sci 5:323. https://doi.org/10.3389/fpls.2014.00323

    Article  PubMed  PubMed Central  Google Scholar 

  13. Unver T, Budak H (2009) Virus-induced gene silencing, a post transcriptional gene silencing method. Int J Plant Genomics 2009:198680. https://doi.org/10.1155/2009/198680

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Voinnet O (2001) RNA silencing as a plant immune system against viruses. Trends Genet 17(8):449–459. https://doi.org/10.1016/S0168-9525(01)02367-8

    Article  CAS  PubMed  Google Scholar 

  15. Romano N, Macino G (1992) Quelling: transient inactivation of gene expression in Neurospora crassa by transformation with homologous sequences. Mol Microbiol 6(22):3343–3353. https://doi.org/10.1111/j.1365-2958.1992.tb02202.x

    Article  CAS  PubMed  Google Scholar 

  16. Baulcombe DC (1999) Fast forward genetics based on virus-induced gene silencing. Curr Opin Plant Biol 2:109–113. https://doi.org/10.1016/S1369-5266(99)80022-3

    Article  CAS  PubMed  Google Scholar 

  17. Liu H, Reavy B, Swanson M et al (2002a) Functional replacement of the Tobacco rattle virus cysteine-rich protein by pathogenicity proteins from unrelated plant viruses. Virology 298:232–239. https://doi.org/10.1006/viro.2002.1421

    Article  CAS  PubMed  Google Scholar 

  18. Xu P, Zhang Y, Kang L et al (2006) Computational estimation and experimental verification of off-target silencing during posttranscriptional gene silencing in plants. Plant Physiol 142:429–440. https://doi.org/10.1104/pp.106.083295

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Valentine T, Shaw J, Blok VC et al (2004) Efficient virus-induced gene silencing in roots using a modified Tobacco rattle virus vector. Plant Physiol 136:3999–4009. https://doi.org/10.1104/pp.104.051466

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Ratcliff F, Martin-Hernandez AM, Baulcombe DC (2001) Technical Advance. Tobacco rattle virus as a vector for analysis of gene function by silencing. Plant J 25:237–245. https://doi.org/10.1046/j.0960-7412.2000.00942.x

    Article  CAS  PubMed  Google Scholar 

  21. Liu Y, Schiff M, Dinesh-Kumar SP (2002b) Virus-induced gene silencing in tomato. Plant J 31:777–786. https://doi.org/10.1046/j.1365-313X.2002.01394.x

    Article  CAS  PubMed  Google Scholar 

  22. Carqueijeiro I, Masini E, Foureau E et al (2015) Virus-induced gene silencing in Catharanthus roseus by biolistic inoculation of tobacco rattle virus vectors. Plant Biol 17:1242–1246. https://doi.org/10.1111/plb.12380

    Article  CAS  PubMed  Google Scholar 

  23. Corbin C, Lafontaine F, Sepúlveda LJ et al (2017) Virus-induced gene silencing in Rauwolfia species. Protoplasma 254:1813. https://doi.org/10.1007/s00709-017-1079-y

    Article  CAS  PubMed  Google Scholar 

  24. Dessens JT, Lomonossoff GP (1993) Cauliflower mosaic virus 35S promoter-controlled DNA copies of cowpea mosaic virus RNAs are infectious on plants. J Gen Virol 74:889–892. https://doi.org/10.1099/0022-1317-74-5-889

    Article  CAS  PubMed  Google Scholar 

  25. Jakab G, Droz E, Brigneti G et al (1997) Infectious in vivo and in vitro transcripts from a full-length cDNA clone of PVY-N605, a Swiss necrotic isolate of potato virus Y. J Gen Virol 78(12):3141–3145. https://doi.org/10.1099/0022-1317-78-12-3141

    Article  CAS  PubMed  Google Scholar 

  26. Foureau E, Carqueijeiro I, Dugé de Bernonville T et al (2016) Prequels to synthetic biology: from candidate gene identification and validation to enzyme subcellular localization in plant and yeast cells. In: O’Connor S (ed) Synthetic biology and metabolic engineering in plants and microbes. Part B: Metabolism in plants, Methods in enzymology, vol 576. Elsevier, Academic Press, Amsterdam, pp 167–206. https://doi.org/10.1016/bs.mie.2016.02.013

    Chapter  Google Scholar 

  27. Lim HS, Vaira AM, Domier LL et al (2010) Efficiency of VIGS and gene expression in a novel bipartite potexvirus vector delivery system as a function of strength of TGB1 silencing suppression. Virology 402(1):149–163. https://doi.org/10.1016/j.virol.2010.03.022

    Article  CAS  PubMed  Google Scholar 

  28. Tatsis EC, Carqueijeiro I, Dugé de Bernonville T et al (2017) A three enzyme system to generate the Strychnos alkaloid scaffold from a central biosynthetic intermediate. Nat Commun 8(1):316. https://doi.org/10.1038/s41467-017-00154-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Caputi L, Franke J, Farrow SC et al (2018) Missing enzymes in the biosynthesis of the anticancer drug vinblastine in Madagascar periwinkle. Science 360(6394):1235–1239. https://doi.org/10.1126/science.aat4100

    Article  CAS  PubMed  Google Scholar 

  30. Salim V, Yu F, Altarejos J et al (2013) Virus-induced gene silencing identifies Catharanthus roseus 7-deoxyloganic acid-7-hydroxylase, a step in iridoid and monoterpene indole alkaloid biosynthesis. Plant J 76:754–765. https://doi.org/10.1111/tpj.12330

    Article  CAS  PubMed  Google Scholar 

  31. Liscombe DK, O’Connor SE (2011) A virus-induced gene silencing approach to understanding alkaloid metabolism in Catharanthus roseus. Phytochemistry 72(16):1969–1977. https://doi.org/10.1016/j.phytochem.2011.07.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Besseau S, Kellner F, Lanoue A et al (2013) A pair of tabersonine 16-hydroxylases initiates the synthesis of vindoline in an organ-dependent manner in Catharanthus roseus. Plant Physiol 163(4):1792–1803. https://doi.org/10.1104/pp.113.222828

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Inês Carqueijeiro or Vincent Courdavault .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Cruz, P.L. et al. (2020). A Biolistic-Mediated Virus-Induced Gene Silencing in Apocynaceae to Map Biosynthetic Pathways of Alkaloids. In: Courdavault, V., Besseau, S. (eds) Virus-Induced Gene Silencing in Plants. Methods in Molecular Biology, vol 2172. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-0751-0_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-0751-0_8

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-0750-3

  • Online ISBN: 978-1-0716-0751-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics