Skip to main content

Myocardial Infarction Techniques in Adult Mice

  • Protocol
  • First Online:
Cardiac Regeneration

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2158))

Abstract

The discovery of endogenous regenerative potential of the heart in zebrafish and neonatal mice has shifted the cardiac regenerative field towards the utilization of intrinsic regenerative mechanisms in the mammalian heart. The goal of these studies is to understand, and eventually apply, the neonatal regenerative mechanisms into adulthood. To facilitate these studies, the last two decades have seen advancements in the development of injury models in adult mice representative of the diversity of cardiac diseases. Here, we provide an overview for a selection of the most common cardiac ischemic injury models and describe a set of methods used to accurately analyze and quantify cardiac outcomes. Importantly, a comprehensive understanding of cardiac regeneration and repair requires a combination of multiple functional, histological, and molecular analyses.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Tzahor E, Poss KD (2017) Cardiac regeneration strategies: staying young at heart. Science 356(6342):1035–1039. https://doi.org/10.1126/science.aam5894

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Pomeroy JE, Helfer A, Bursac N (2019) Biomaterializing the promise of cardiac tissue engineering. Biotechnol Adv. https://doi.org/10.1016/j.biotechadv.2019.02.009

  3. Heallen Todd R, Kadow Zachary A, Kim Jong H, Wang J, Martin James F (2019) Stimulating cardiogenesis as a treatment for heart failure. Circ Res 124(11):1647–1657. https://doi.org/10.1161/CIRCRESAHA.118.313573

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Hashimoto H, Olson EN, Bassel-Duby R (2018) Therapeutic approaches for cardiac regeneration and repair. Nat Rev Cardiol 15(10):585–600. https://doi.org/10.1038/s41569-018-0036-6

    Article  PubMed  PubMed Central  Google Scholar 

  5. González-Rosa JM, Martín V, Peralta M, Torres M, Mercader N (2011) Extensive scar formation and regression during heart regeneration after cryoinjury in zebrafish. Development 138(9):1663–1674. https://doi.org/10.1242/dev.060897

    Article  CAS  PubMed  Google Scholar 

  6. van den Bos EJ, Mees BME, de Waard MC, de Crom R, Duncker DJ (2005) A novel model of cryoinjury-induced myocardial infarction in the mouse: a comparison with coronary artery ligation. Am J Phys Heart Circ Phys 289(3):H1291–H1300. https://doi.org/10.1152/ajpheart.00111.2005

    Article  CAS  Google Scholar 

  7. Wang J, Panáková D, Kikuchi K, Holdway JE, Gemberling M, Burris JS, Singh SP, Dickson AL, Lin Y-F, Sabeh MK, Werdich AA, Yelon D, MacRae CA, Poss KD (2011) The regenerative capacity of zebrafish reverses cardiac failure caused by genetic cardiomyocyte depletion. Development 138(16):3421–3430. https://doi.org/10.1242/dev.068601

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Akazawa H, Komazaki S, Shimomura H, Terasaki F, Zou Y, Takano H, Nagai T, Komuro I (2004) Diphtheria toxin-induced autophagic cardiomyocyte death plays a pathogenic role in mouse model of heart failure. J Biol Chem 279(39):41095–41103. https://doi.org/10.1074/jbc.M313084200

    Article  CAS  PubMed  Google Scholar 

  9. Poss KD, Wilson LG, Keating MT (2002) Heart regeneration in zebrafish. Science 298(5601):2188–2190. https://doi.org/10.1126/science.1077857

    Article  CAS  PubMed  Google Scholar 

  10. Porrello ER, Mahmoud AI, Simpson E, Hill JA, Richardson JA, Olson EN, Sadek HA (2011) Transient regenerative potential of the neonatal mouse heart. Science 331(6020):1078–1080. https://doi.org/10.1126/science.1200708

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Sarig R, Rimmer R, Bassat E, Zhang L, Umansky KB, Lendengolts D, Perlmoter G, Yaniv K, Tzahor E (2019) Transient p53-mediated regenerative senescence in the injured heart. Circulation 139(21):2491–2494. https://doi.org/10.1161/CIRCULATIONAHA.119.040125

    Article  PubMed  Google Scholar 

  12. Porrello ER, Mahmoud AI, Simpson E, Johnson BA, Grinsfelder D, Canseco D, Mammen PP, Rothermel BA, Olson EN, Sadek HA (2013) Regulation of neonatal and adult mammalian heart regeneration by the miR-15 family. Proc Natl Acad Sci U S A 110(1):187–192. https://doi.org/10.1073/pnas.1208863110

    Article  PubMed  Google Scholar 

  13. D’Uva G, Aharonov A, Lauriola M, Kain D, Yahalom-Ronen Y, Carvalho S, Weisinger K, Bassat E, Rajchman D, Yifa O, Lysenko M, Konfino T, Hegesh J, Brenner O, Neeman M, Yarden Y, Leor J, Sarig R, Harvey RP, Tzahor E (2015) ERBB2 triggers mammalian heart regeneration by promoting cardiomyocyte dedifferentiation and proliferation. Nat Cell Biol 17(5):627–638. https://doi.org/10.1038/ncb3149. http://www.nature.com/ncb/journal/v17/n5/abs/ncb3149.html#supplementary-information

    Article  CAS  PubMed  Google Scholar 

  14. Bassat E, Mutlak YE, Genzelinakh A, Shadrin IY, Baruch Umansky K, Yifa O, Kain D, Rajchman D, Leach J, Riabov Bassat D, Udi Y, Sarig R, Sagi I, Martin JF, Bursac N, Cohen S, Tzahor E (2017) The extracellular matrix protein agrin promotes heart regeneration in mice. Nature 547(7662):179–184

    Article  CAS  Google Scholar 

  15. Urashima T, Zhao M, Wagner R, Fajardo G, Farahani S, Quertermous T, Bernstein D (2008) Molecular and physiological characterization of RV remodeling in a murine model of pulmonary stenosis. Am J Physiol Heart Circ Physiol 295(3):H1351–H1368. https://doi.org/10.1152/ajpheart.91526.2007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Tarnavski O, McMullen JR, Schinke M, Nie Q, Kong S, Izumo S (2004) Mouse cardiac surgery: comprehensive techniques for the generation of mouse models of human diseases and their application for genomic studies. Physiol Genomics 16(3):349–360. https://doi.org/10.1152/physiolgenomics.00041.2003

    Article  CAS  PubMed  Google Scholar 

  17. deAlmeida AC, van Oort RJ, Wehrens XHT (2010) Transverse aortic constriction in mice. J Vis Exp 38:1729. https://doi.org/10.3791/1729

    Article  Google Scholar 

  18. Lindsey ML, Bolli R, Canty JM Jr, Du X-J, Frangogiannis NG, Frantz S, Gourdie RG, Holmes JW, Jones SP, Kloner RA, Lefer DJ, Liao R, Murphy E, Ping P, Przyklenk K, Recchia FA, Longacre LS, Ripplinger CM, Eyk JEV, Heusch G (2018) Guidelines for experimental models of myocardial ischemia and infarction. Am J Phys Heart Circ Phys 314(4):H812–H838. https://doi.org/10.1152/ajpheart.00335.2017

    Article  CAS  Google Scholar 

  19. Patterson M, Barske L, Van Handel B, Rau CD, Gan P, Sharma A, Parikh S, Denholtz M, Huang Y, Yamaguchi Y, Shen H, Allayee H, Crump JG, Force TI, Lien C-L, Makita T, Lusis AJ, Kumar SR, Sucov HM (2017) Frequency of mononuclear diploid cardiomyocytes underlies natural variation in heart regeneration. Nat Genet 49:1346. https://doi.org/10.1038/ng.3929. https://www.nature.com/articles/ng.3929#supplementary-information

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. González-Rosa JM, Sharpe M, Field D, Soonpaa MH, Field LJ, Burns CE, Burns CG (2018) Myocardial polyploidization creates a barrier to heart regeneration in zebrafish. Developmental Cell 44(4):433–446.e437. https://doi.org/10.1016/j.devcel.2018.01.021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Hesse M, Doengi M, Becker A, Kimura K, Voeltz N, Stein V, Fleischmann Bernd K (2018) Midbody positioning and distance between daughter nuclei enable unequivocal identification of cardiomyocyte cell division in mice. Circ Res 123(9):1039–1052. https://doi.org/10.1161/CIRCRESAHA.118.312792

    Article  CAS  PubMed  Google Scholar 

  22. Alvarez R, Wang BJ, Quijada PJ, Avitabile D, Ho T, Shaitrit M, Chavarria M, Firouzi F, Ebeid D, Monsanto MM, Navarrete N, Moshref M, Siddiqi S, Broughton KM, Bailey BA, Gude NA, Sussman MA (2019) Cardiomyocyte cell cycle dynamics and proliferation revealed through cardiac-specific transgenesis of fluorescent ubiquitinated cell cycle indicator (FUCCI). J Mol Cell Cardiol 127:154–164. https://doi.org/10.1016/j.yjmcc.2018.12.007

    Article  CAS  PubMed  Google Scholar 

  23. Mohamed TMA, Ang Y-S, Radzinsky E, Zhou P, Huang Y, Elfenbein A, Foley A, Magnitsky S, Srivastava D (2018) Regulation of cell cycle to stimulate adult cardiomyocyte proliferation and cardiac regeneration. Cell 173(1):104–116.e112. https://doi.org/10.1016/j.cell.2018.02.014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Yahalom-Ronen Y, Rajchman D, Sarig R, Geiger B, Tzahor E (2015) Reduced matrix rigidity promotes neonatal cardiomyocyte dedifferentiation, proliferation and clonal expansion. eLife 4:e07455. https://doi.org/10.7554/eLife.07455

    Article  PubMed Central  Google Scholar 

  25. Wang LL, Liu Y, Chung JJ, Wang T, Gaffey AC, Lu M, Cavanaugh CA, Zhou S, Kanade R, Atluri P, Morrisey EE, Burdick JA (2017) Local and sustained miRNA delivery from an injectable hydrogel promotes cardiomyocyte proliferation and functional regeneration after ischemic injury. Nat Biomed Eng 1:983–992. https://doi.org/10.1038/s41551-017-0157-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Michalska-Kasiczak M, Bielecka-Dabrowa A, von Haehling S, Anker SD, Rysz J, Banach M (2018) Biomarkers, myocardial fibrosis and co-morbidities in heart failure with preserved ejection fraction: an overview. Arch Med Sci 14(4):890–909. https://doi.org/10.5114/aoms.2018.76279

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Xu Z, McElhanon KE, Beck EX, Weisleder N (2018) A murine model of myocardial ischemia–reperfusion injury. In: Tharakan B (ed) Traumatic and ischemic injury: methods and protocols. Springer New York, New York, NY, pp 145–153. https://doi.org/10.1007/978-1-4939-7526-6_12

    Chapter  Google Scholar 

  28. Maciver RD, Ozolinš TRS (2019) The application of high-resolution ultrasound for assessment of cardiac structure and function associated with developmental toxicity. In: Hansen JM, Winn LM (eds) Developmental toxicology: methods and protocols. Springer New York, New York, NY, pp 405–420. https://doi.org/10.1007/978-1-4939-9182-2_26

    Chapter  Google Scholar 

  29. Gueret P, Meerbaum S, Wyatt HL, Uchiyama T, Lang TW, Corday E (1980) Two-dimensional echocardiographic quantitation of left ventricular volumes and ejection fraction. Importance of accounting for dyssynergy in short-axis reconstruction models. Circulation 62(6):1308–1318. https://doi.org/10.1161/01.CIR.62.6.1308

    Article  CAS  PubMed  Google Scholar 

  30. Mewton N, Liu CY, Croisille P, Bluemke D, Lima JAC (2011) Assessment of myocardial fibrosis with cardiovascular magnetic resonance. J Am Coll Cardiol 57(8):891–903. https://doi.org/10.1016/j.jacc.2010.11.013

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eldad Tzahor .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Bassat, E., Perez, D.E., Tzahor, E. (2021). Myocardial Infarction Techniques in Adult Mice. In: Poss, K.D., Kühn, B. (eds) Cardiac Regeneration. Methods in Molecular Biology, vol 2158. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-0668-1_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-0668-1_1

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-0667-4

  • Online ISBN: 978-1-0716-0668-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics