Skip to main content

Measurement of Homologous Recombination at Stalled Mammalian Replication Forks

  • Protocol
  • First Online:
Homologous Recombination

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2153))

Abstract

Site-specific replication fork barriers (RFBs) have proven valuable tools for studying mechanisms of repair at sites of replication fork stalling in prokaryotes and yeasts. We adapted the Escherichia coli Tus-Ter RFB for use in mammalian cells and used it to trigger site-specific replication fork stalling and homologous recombination (HR) at a defined chromosomal locus in mammalian cells. By comparing HR responses induced at the Tus-Ter RFB with those induced by a site-specific double-strand break (DSB), we have begun to uncover how the mechanisms of mammalian stalled fork repair differ from those underlying the repair of a replication-independent DSB. Here, we outline how to transiently express the Tus protein in mES cells, how to use flow cytometry to score conservative and aberrant repair outcomes, and how to quantify distinct repair outcomes in response to replication fork stalling at the inducible Tus-Ter chromosomal RFB.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ciccia A, Elledge SJ (2010) The DNA damage response: making it safe to play with knives. Mol Cell 40(2):179–204. https://doi.org/10.1016/j.molcel.2010.09.019. S1097-2765(10)00747-1 [pii]. PubMed PMID: 20965415; PubMed Central PMCID: PMC2988877

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Zeman MK, Cimprich KA (2014) Causes and consequences of replication stress. Nat Cell Biol 16(1):2–9. https://doi.org/10.1038/ncb2897

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Bidnenko V, Ehrlich SD, Michel B (2002) Replication fork collapse at replication terminator sequences. EMBO J 21(14):3898–3907

    Article  CAS  Google Scholar 

  4. Michel B (2000) Replication fork arrest and DNA recombination. Trends Biochem Sci 25(4):173–178

    Article  CAS  Google Scholar 

  5. Lambert S, Mizuno K, Blaisonneau J, Martineau S, Chanet R, Freon K et al (2010) Homologous recombination restarts blocked replication forks at the expense of genome rearrangements by template exchange. Mol Cell 39(3):346–359. https://doi.org/10.1016/j.molcel.2010.07.015

    Article  CAS  PubMed  Google Scholar 

  6. Lambert S, Watson A, Sheedy DM, Martin B, Carr AM (2005) Gross chromosomal rearrangements and elevated recombination at an inducible site-specific replication fork barrier. Cell 121(5):689–702

    Article  CAS  Google Scholar 

  7. Ahn JS, Osman F, Whitby MC (2005) Replication fork blockage by RTS1 at an ectopic site promotes recombination in fission yeast. EMBO J 24(11):2011–2023

    Article  CAS  Google Scholar 

  8. Jalan M, Oehler J, Morrow CA, Osman F, Whitby MC (2019) Factors affecting template switch recombination associated with restarted DNA replication. eLife 8. https://doi.org/10.7554/eLife.41697. PubMed PMID: 30667359; PubMed Central PMCID: PMCPMC6358216

  9. Nguyen MO, Jalan M, Morrow CA, Osman F, Whitby MC (2015) Recombination occurs within minutes of replication blockage by RTS1 producing restarted forks that are prone to collapse. eLife 4:e04539. https://doi.org/10.7554/eLife.04539. PubMed PMID: 25806683; PubMed Central PMCID: PMCPMC4407270

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Larsen NB, Hickson ID, Mankouri HW (2014) Tus-Ter as a tool to study site-specific DNA replication perturbation in eukaryotes. Cell Cycle 13(19):2994–2998. https://doi.org/10.4161/15384101.2014.958912. PubMed PMID: 25486560; PubMed Central PMCID: PMCPMC4614373

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Larsen NB, Liberti SE, Vogel I, Jorgensen SW, Hickson ID, Mankouri HW (2017) Stalled replication forks generate a distinct mutational signature in yeast. Proc Natl Acad Sci U S A 114(36):9665–9670. https://doi.org/10.1073/pnas.1706640114. PubMed PMID: 28827358; PubMed Central PMCID: PMCPMC5594675

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Larsen NB, Sass E, Suski C, Mankouri HW, Hickson ID (2014) The Escherichia coli Tus-Ter replication fork barrier causes site-specific DNA replication perturbation in yeast. Nat Commun 5:3574. https://doi.org/10.1038/ncomms4574

    Article  CAS  PubMed  Google Scholar 

  13. Berghuis BA, Dulin D, Xu ZQ, van Laar T, Cross B, Janissen R et al (2015) Strand separation establishes a sustained lock at the Tus-Ter replication fork barrier. Nat Chem Biol 11(8):579–585. https://doi.org/10.1038/nchembio.1857

    Article  CAS  PubMed  Google Scholar 

  14. Elshenawy MM, Jergic S, Xu ZQ, Sobhy MA, Takahashi M, Oakley AJ et al (2015) Replisome speed determines the efficiency of the Tus-Ter replication termination barrier. Nature 525(7569):394–398. https://doi.org/10.1038/nature14866

    Article  CAS  PubMed  Google Scholar 

  15. Mulcair MD, Schaeffer PM, Oakley AJ, Cross HF, Neylon C, Hill TM et al (2006) A molecular mousetrap determines polarity of termination of DNA replication in E. coli. Cell 125(7):1309–1319

    Article  CAS  Google Scholar 

  16. Pandey M, Elshenawy MM, Jergic S, Takahashi M, Dixon NE, Hamdan SM et al (2015) Two mechanisms coordinate replication termination by the Escherichia coli Tus-Ter complex. Nucleic Acids Res 43(12):5924–5935. https://doi.org/10.1093/nar/gkv527. PubMed PMID: 26007657; PubMed Central PMCID: PMCPMC4499146

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Willis NA, Chandramouly G, Huang B, Kwok A, Follonier C, Deng C et al (2014) BRCA1 controls homologous recombination at Tus/Ter-stalled mammalian replication forks. Nature 510(7506):556–559. https://doi.org/10.1038/nature13295. PubMed PMID: 24776801; PubMed Central PMCID: PMC4118467

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Jasin M (1996) Genetic manipulation of genomes with rare-cutting endonucleases. Trends Genet 12(6):224–228

    Article  CAS  Google Scholar 

  19. Shaner NC, Campbell RE, Steinbach PA, Giepmans BN, Palmer AE, Tsien RY (2004) Improved monomeric red, orange and yellow fluorescent proteins derived from Discosoma sp. red fluorescent protein. Nat Biotechnol 22(12):1567–1572

    Article  CAS  Google Scholar 

  20. Chandramouly G, Kwok A, Huang B, Willis NA, Xie A, Scully R (2013) BRCA1 and CtIP suppress long-tract gene conversion between sister chromatids. Nat Commun 4:2404. https://doi.org/10.1038/ncomms3404. ncomms3404 [pii]. PubMed PMID: 23994874; PubMed Central PMCID: PMC3838905

    Article  PubMed  PubMed Central  Google Scholar 

  21. Willis NA, Frock RL, Menghi F, Duffey EE, Panday A, Camacho V et al (2017) Mechanism of tandem duplication formation in BRCA1-mutant cells. Nature 551(7682):590–595. https://doi.org/10.1038/nature24477. PubMed PMID: 29168504; PubMed Central PMCID: PMCPMC5728692

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Paques F, Haber JE (1999) Multiple pathways of recombination induced by double-strand breaks in Saccharomyces cerevisiae. Microbiol Mol Biol Rev 63(2):349–404

    Article  CAS  Google Scholar 

  23. Scully R, Panday A, Elango R, Willis NA (2019) DNA double-strand break repair-pathway choice in somatic mammalian cells. Nat Rev Mol Cell Biol. https://doi.org/10.1038/s41580-019-0152-0

  24. Willis NA, Panday A, Duffey EE, Scully R (2018) Rad51 recruitment and exclusion of non-homologous end joining during homologous recombination at a Tus/Ter mammalian replication fork barrier. PLoS Genet 14(7):e1007486. https://doi.org/10.1371/journal.pgen.1007486. PubMed PMID: 30024881; PubMed Central PMCID: PMCPMC6067765

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Johnson RD, Jasin M (2000) Sister chromatid gene conversion is a prominent double-strand break repair pathway in mammalian cells. EMBO J 19(13):3398–3407

    Article  CAS  Google Scholar 

  26. Nagaraju G, Odate S, Xie A, Scully R (2006) Differential regulation of short- and long-tract gene conversion between sister chromatids by Rad51C. Mol Cell Biol 26(21):8075–8086. PubMed PMID: 16954385; PubMed Central PMCID: PMC1636746

    Article  CAS  Google Scholar 

  27. Puget N, Knowlton M, Scully R (2005) Molecular analysis of sister chromatid recombination in mammalian cells. DNA Repair (Amst) 4(2):149–161. PubMed PMID: 15590323; PubMed Central PMCID: PMC2967438

    Article  CAS  Google Scholar 

  28. Menghi F, Barthel FP, Yadav V, Tang M, Ji B, Tang Z et al (2018) The tandem duplicator phenotype is a prevalent genome-wide cancer configuration driven by distinct gene mutations. Cancer Cell 34(2):197–210 e5. https://doi.org/10.1016/j.ccell.2018.06.008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Menghi F, Inaki K, Woo X, Kumar PA, Grzeda KR, Malhotra A et al (2016) The tandem duplicator phenotype as a distinct genomic configuration in cancer. Proc Natl Acad Sci U S A 113(17):E2373–E2382. https://doi.org/10.1073/pnas.1520010113. PubMed PMID: 27071093; PubMed Central PMCID: PMCPMC4855596

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Nik-Zainal S, Davies H, Staaf J, Ramakrishna M, Glodzik D, Zou X et al (2016) Landscape of somatic mutations in 560 breast cancer whole-genome sequences. Nature 534(7605):47–54. https://doi.org/10.1038/nature17676. PubMed PMID: 27135926; PubMed Central PMCID: PMCPMC4910866

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Pillarisetti A, Ladjal H, Ferreira A, Keefer C, Desai JP (2009) Mechanical characterization of mouse embryonic stem cells. Conf Proc IEEE Eng Med Biol Soc 2009:1176–1179. https://doi.org/10.1109/IEMBS.2009.5333954

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ralph Scully .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Willis, N.A., Scully, R. (2021). Measurement of Homologous Recombination at Stalled Mammalian Replication Forks. In: Aguilera, A., Carreira, A. (eds) Homologous Recombination. Methods in Molecular Biology, vol 2153. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-0644-5_23

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-0644-5_23

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-0643-8

  • Online ISBN: 978-1-0716-0644-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics