Skip to main content

Plant Cell Wall Proteomes: Bioinformatics and Cell Biology Tools to Assess the Bona Fide Cell Wall Localization of Proteins

  • Protocol
  • First Online:
The Plant Cell Wall

Abstract

The purification of plant cell walls is challenging because they constitute an open compartment which is not limited by a membrane like the cell organelles. Different strategies have been established to limit the contamination by proteins of other compartments in cell wall proteomics studies. Non-destructive methods rely on washing intact cells with various types of solutions without disrupting the plasma membrane in order to elute cell wall proteins. In contrast, destructive protocols involve the purification of cell walls prior to the extraction of proteins with salt solutions. In both cases, proteins known to be intracellular have been identified by mass spectrometry in cell wall proteomes. The aim of this chapter is to provide tools to assess the subcellular localization of the proteins identified in cell wall proteomics studies, including: (1) bioinformatic predictions, (2) immunocytolocalization of proteins of interest on tissue sections and (3) in muro observation of proteins of interest fused to reporter fluorescent proteins by confocal microscopy. Finally, a qualitative assessment of the work can be performed and the strategy used to prepare the samples can be optimized if necessary.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Carpita NC, Gibeaut DM (1993) Structural models of primary cell walls in flowering plants, consistency of molecular structure with the physical properties of the walls during growth. Plant J 3:1–30

    CAS  PubMed  Google Scholar 

  2. Albenne C, Canut H, Jamet E (2013) Plant cell wall proteomics: the leadership of Arabidopsis thaliana. Front Plant Sci 4(111). https://doi.org/10.3389/fpls.2013.00111

  3. Lee SJ, Saravanan RS, Damasceno CM, Yamane H, Kim BD, Rose JK (2004) Digging deeper into the plant cell wall proteome. Plant Physiol Biochem 42:979–988. https://doi.org/10.1016/j.plaphy.2004.10.014

    Article  CAS  PubMed  Google Scholar 

  4. Boudart G, Jamet E, Rossignol M, Lafitte C, Borderies G, Jauneau A, Esquerré-Tugayé M-T, Pont-Lezica R (2005) Cell wall proteins in apoplastic fluids of Arabidopsis thaliana rosettes: identification by mass spectrometry and bioinformatics. Proteomics 5:212–221

    CAS  PubMed  Google Scholar 

  5. Feiz L, Irshad M, Pont-Lezica RF, Canut H, Jamet E (2006) Evaluation of cell wall preparations for proteomics: a new procedure for purifying cell walls from Arabidopsis hypocotyls. Plant Methods 2:10. https://doi.org/10.1186/1746-4811-2-10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Chivasa S, Ndimba BK, Simon WJ, Robertson D, Yu X-L, Knox JP, Bolwell P, Slabas AR (2002) Proteomic analysis of the Arabidopsis thaliana cell wall. Electrophoresis 23:1754–1765

    CAS  PubMed  Google Scholar 

  7. Jamet E, Albenne C, Boudart G, Irshad M, Canut H, Pont-Lezica R (2008) Recent advances in plant cell wall proteomics. Proteomics 8:893–908

    CAS  PubMed  Google Scholar 

  8. Nickel W, Seedorf M (2008) Unconventional mechanisms of protein transport to the cell surface of eukaryotic cells. Ann Rev Cell Dev Biol 24:287–308

    CAS  Google Scholar 

  9. Pinedo M, Regente M, Elizalde M, Quiroga I, Pagnussat LA, Jorrin-Novo J, Maldonado A, de la Canal L (2012) Extracellular sunflower proteins: evidence on non-classical secretion of a jacalin-related lectin. Protein Pept Lett 19:270–276

    CAS  PubMed  Google Scholar 

  10. Chen MH, Huang LF, Li HM, Chen YR, Yu SM (2004) Signal peptide-dependent targeting of a rice alpha-amylase and cargo proteins to plastids and extracellular compartments of plant cells. Plant Physiol 135:1367–1377

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Emanuelsson O, Brunak S, Von Heijne G, Nielsen H (2007) Locating proteins in the cell using TargetP, SignalP and related tools. Nat Protoc 2:953–971

    CAS  PubMed  Google Scholar 

  12. Petersen TN, Brunak S, von Heijne G, Nielsen H (2011) SignalP 4.0: discriminating signal peptides from transmembrane regions. Nat Method 8:785–786

    CAS  Google Scholar 

  13. Small I, Peeters N, Legeai F, Lurin C (2004) Predotar: a tool for rapidly screening proteomes for N-terminal targeting sequences. Proteomics 4:1581–1590

    CAS  PubMed  Google Scholar 

  14. Nakai K, Horton P (1999) PSORT: a program for detecting sorting signals in proteins and predicting their subcellular localization. Trends Biochem Sci 24:34–35

    CAS  PubMed  Google Scholar 

  15. Sonnhammer EL, von Heijne G, Krogh A (1998) A hidden Markov model for predicting transmembrane helices in protein sequences. Proc Int Conf Intell Syst Mol Biol 6:175–182

    CAS  PubMed  Google Scholar 

  16. Hofmann K, Stoffel W (1993) TMbase – a database of membrane spanning proteins segments. Biol Chem Hoppe Seyler 374:166

    Google Scholar 

  17. Sigrist CJA, de Castro E, Cerutti L, Cuche BA, Hulo N, Bridge A, Bougueleret L, Xenarios I (2013) New and continuing developments at PROSITE. Nucleic Acids Res 41(Database issue):D344–D347

    CAS  PubMed  Google Scholar 

  18. Eisenhaber B, Wildpaner M, Schultz CJ, Borner GH, Dupree P, Eisenhaber F (2003) Glycosylphosphatidylinositol lipid anchoring of plant proteins. Sensitive prediction from sequence- and genome-wide studies for Arabidopsis and rice. Plant Physiol 133:1691–1701. https://doi.org/10.1104/pp.103.023580

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Pierleoni A, Martelli PL, Casadio R (2008) PredGPI: a GPI-anchor predictor. BMC Bioinformatics 9:392

    PubMed  PubMed Central  Google Scholar 

  20. Fankhauser N, Mäser P (2005) Identification of GPI anchor attachment signals by a Kohonen self-organizing map. Bioinformatics 21:1846–1852

    CAS  PubMed  Google Scholar 

  21. Bendtsen JD, Jensen LJ, Blom N, von Heijne G, Brunak S (2004) Feature based prediction of non-classical and leaderless protein secretion. Protein Eng Des Sel 17:349–356

    CAS  PubMed  Google Scholar 

  22. Schwacke R, Schneider A, van der Graaff E, Fischer K, Catoni E, Desimone M, Frommer WB, Flugge UI, Kunze R (2003) ARAMEMNON, a novel database for Arabidopsis integral membrane proteins. Plant Physiol 131:16–26

    CAS  PubMed  PubMed Central  Google Scholar 

  23. San Clemente H, Pont-Lezica R, Jamet E (2009) Bioinformatics as a tool for assessing the quality of sub-cellular proteomic strategies and inferring functions of proteins: plant cell wall proteomics as a test case. Bioinform Biol Insights 3:15–28

    CAS  Google Scholar 

  24. Tanz SK, Castleden I, Hooper CM, Vacher M, Small I, Millar HA (2013) SUBA3: a database for integrating experimentation and prediction to define the SUBcellular location of proteins of Arabidopsis. Nucleic Acids Res 41(Database issue):D1185–D1191

    CAS  PubMed  Google Scholar 

  25. San Clemente H, Jamet E (2015) WallProtDB, a database resource for plant cell wall proteomics. Plant Methods 11:2

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Francoz E, Ranocha P, Pernot C, Le Ru A, Pacquit V, Dunand C, Burlat V (2016) Complementarity of medium-throughput in situ RNA hybridization and tissue-specific transcriptomics: case study of Arabidopsis seed development kinetics. Sci Rep 6:e24644

    Google Scholar 

  27. Shamloul M, Trusa J, Mett V, Yusibov V (2014) Optimization and utilization of Agrobacterium-mediated transient protein production in Nicotiana. J Vis Exp 86:e51204

    Google Scholar 

  28. Peyret H, Lomonossoff GP (2013) The pEAQ vector series: the easy and quick way to produce recombinant proteins in plants. Plant Mol Biol 83:51–58

    CAS  PubMed  Google Scholar 

  29. Merzlyak EM, Goedhart J, Shcherbo D, Bulina ME, Shcheglov AS, Fradkov AF, Gaintzeva A, Lukyanov KA, Lukyanov S, Gadella TW, Chudakov DM (2007) Bright monomeric red fluorescent protein with an extended fluorescence lifetime. Nat Method 4:555–557

    CAS  Google Scholar 

  30. Berthold F, Roujol D, Hemmer C, Jamet E, Ritzenthaler C, Hoffmann L, Schmitt-Keichinger C (2019) Inside or outside? A new collection of Gateway vectors allowing plant protein subcellular localization or over-expression. Plasmids 105:102436

    CAS  Google Scholar 

  31. Karimi M, Inzé D, Depicker A (2002) Gateway™ vectors for Agrobacterium-mediated plant transformation. Trends Plant Sci 7:193–195

    CAS  PubMed  Google Scholar 

  32. Oudin A, Mahroug S, Courdavault V, Hervouet N, Zelwer C, Rodríguez-Concepción M, St-Pierre B, Burlat V (2007) Spatial distribution and hormonal regulation of gene products from methyl erythritol phosphate and monoterpene-secoiridoid pathways in Catharanthus roseus. Plant Mol Biol 65:13–30

    CAS  PubMed  Google Scholar 

  33. Burlat V, Kwon M, Davin LB, Lewis NG (2001) Dirigent proteins and dirigent sites in lignifying tissues. Phytochemistry 57:883–897

    CAS  PubMed  Google Scholar 

  34. Douché T, San Clemente H, Burlat V, Roujol D, Valot B, Zivy M, Pont-Lezica R, Jamet E (2013) Brachypodium distachyon as a model plant toward improved biofuel crops: search for secreted proteins involved in biogenesis and disassembly of cell wall polymers. Proteomics 13:2438–2454

    PubMed  Google Scholar 

  35. Kremers GJ, Goedhart J, van Den Heuvel DJ, Gerritsen HC, Gadella TW (2007) Improved green and blue fluorescent proteins for expression in bacteria and mammalian cells. Biochemistry 46:3775–3783

    CAS  PubMed  Google Scholar 

  36. Albenne C, Canut H, Hoffmann L, Jamet E (2014) Plant cell wall proteins: a large body of data, but what about runaways? Proteomes 2:224–242

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Nelson BK, Cai X, Nebenführ A (2007) A multicolored set of in vivo organelle markers for co-localization studies in Arabidopsis and other plants. Plant J 51:1126–1136

    CAS  PubMed  Google Scholar 

  38. von Heijne G (1985) Signal sequences. The limits of variation. J Mol Biol 184:99–105

    Google Scholar 

  39. Borderies G, Jamet E, Lafitte C, Rossignol M, Jauneau A, Boudart G, Monsarrat B, Esquerré-Tugayé MT, Boudet A, Pont-Lezica R (2003) Proteomics of loosely bound cell wall proteins of Arabidopsis thaliana cell suspension cultures: a critical analysis. Electrophoresis 24:3421–3432

    CAS  PubMed  Google Scholar 

  40. Zhou L, Bokhari SA, Dong CJ, Liu JY (2011) Comparative proteomics analysis of the root apoplasts of rice seedlings in response to hydrogen peroxide. PLoS One 6:e16723

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Casasoli M, Spadoni S, Lilley K, Cervone F, De Lorenzo G, Mattei B (2008) Identification by 2-D DIGE of apoplastic proteins regulated by oligogalacturonides in Arabidopsis thaliana. Proteomics 8:1042–1054

    CAS  PubMed  Google Scholar 

  42. Calderan-Rodrigues MJ, Jamet E, Douché T, Rodrigues Bonassi MB, Regiani Cataldi TR, Guimaraes Fonseca JG, San Clemente H, Pont-Lezica R, Labate CA (2016) Cell wall proteome of sugarcane stems: comparison of a destructive and a non-destructive extraction method showed differences in glycoside hydrolases and peroxidases. BMC Plant Biol 16:14

    PubMed  PubMed Central  Google Scholar 

  43. Pechanova O, Hsu CY, Adams JP, Pechan T, Vandervelde L, Drnevich J, Jawdy S, Adeli A, Suttle JC, Lawrence AM, Tschaplinski TJ, Séguin A, Yuceer C (2010) Apoplast proteome reveals that extracellular matrix contributes to multistress response in poplar. BMC Genomics 11:674

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Jung YH, Jeong SH, Kim SH, Singh R, Lee JE, Cho YS, Agrawal GK, Rakwal R, Jwa NS (2008) Systematic secretome analyses of rice leaf and seed callus suspension-cultured cells: workflow development and establishment of high-density two-dimensional gel reference maps. J Proteome Res 7:5187–5210

    CAS  PubMed  Google Scholar 

  45. Bayer EM, Bottrill AR, Walshaw J, Vigouroux M, Naldrett MJ, Thomas CL, Maule AJ (2006) Arabidopsis cell wall proteome defined using multidimensional protein identification technology. Proteomics 6:301–311

    CAS  PubMed  Google Scholar 

  46. Irshad M, Canut H, Borderies G, Pont-Lezica R, Jamet E (2008) A new picture of cell wall protein dynamics in elongating cells of Arabidopsis thaliana: confirmed actors and newcomers. BMC Plant Biol 8:94. https://doi.org/10.1186/1471-2229-8-94

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Nguyen-Kim H, San Clemente H, Balliau T, Zivy M, Dunand C, Albenne C, Jamet E (2016) Arabidopsis thaliana root cell wall proteomics: increasing the proteome coverage using a combinatorial peptide ligand library and description of unexpected Hyp in peroxidase amino acid sequences. Proteomics 16:491–503. https://doi.org/10.1002/pmic.201500129

    Article  CAS  PubMed  Google Scholar 

  48. Verdonk JC, Hatfield RD, Sullivan ML (2012) Proteomic analysis of cell walls of two developmental stages of alfalfa stems. Front Plant Sci 3:279

    PubMed  PubMed Central  Google Scholar 

  49. Printz B, Dos Santos Morais R, Wienkoop S, Sergeant K, Lutts S, Hausman JF, Renaut J (2015) An improved protocol to study the plant cell wall proteome. Front Plant Sci 6:237

    PubMed  PubMed Central  Google Scholar 

  50. Day A, Fénart S, Neutelings G, Hawkins S, Rolando C, Tokarski C (2013) Identification of cell wall proteins in the flax (Linum usitatissimum) stem. Proteomics 13:812–825

    CAS  PubMed  Google Scholar 

  51. Lim S, Chisholm K, Coffin RH, Peters RD, Al-Mughrabi KI, Wang-Pruski G, Pinto DM (2012) Protein profiling in potato (Solanum tuberosum L.) leaf tissues by differential centrifugation. J Proteome Res 11:2594–2601

    CAS  PubMed  Google Scholar 

  52. Sainsbury F, Thuenemann EC, Lomonossoff GP (2009) pEAQ: versatile expression vectors for easy and quick transient expression of heterologous proteins in plants. Plant Biotechnol J 7:682–693

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors are grateful to Université Paul Sabatier (Toulouse III), Université de Strasbourg and CNRS for support. They also wish to thank François Berthold and Caroline Hemmer for their great contribution to the cloning of pEAQ derivatives, Alain Jauneau for providing access to cell imaging facilities (http://trigenotoul.com/), and the bioinformatics platform of GenoToul Midi-Pyrénées for providing calculation facilities (http://bioinfo.genotoul.fr/).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elisabeth Jamet .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Roujol, D. et al. (2020). Plant Cell Wall Proteomes: Bioinformatics and Cell Biology Tools to Assess the Bona Fide Cell Wall Localization of Proteins. In: Popper, Z. (eds) The Plant Cell Wall. Methods in Molecular Biology, vol 2149. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-0621-6_25

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-0621-6_25

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-0619-3

  • Online ISBN: 978-1-0716-0621-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics