Skip to main content

Computational Prediction of Disordered Protein Motifs Using SLiMSuite

  • Protocol
  • First Online:
Intrinsically Disordered Proteins

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2141))

Abstract

Short linear motifs (SLiMs) are important mediators of interactions between intrinsically disordered regions of proteins and their interaction partners. Here, we detail instructions for the computational prediction of SLiMs in disordered protein regions, using the main tools of the SLiMSuite package: (1) SLiMProb identifies and calculates enrichment of predefined motifs in a set of proteins; (2) SLiMFinder predicts SLiMs de novo in a set of proteins, accounting for evolutionary relationships; (3) QSLiMFinder increases SLiMFinder sensitivity by focusing SLiM prediction on a specific query protein/region; (4) CompariMotif compares predicted SLiMs to known SLiMs or other SLiM predictions to identify common patterns. For each tool, command-line and online server examples are provided. Detailed notes provide additional advice on different applications of SLiMSuite, including batch running of multiple datasets and conservation masking using alignments of predicted orthologues.

SLiMSuite is freely available under a GNU General Public License at https://github.com/slimsuite/SLiMSuite. SLiMSuite servers are available at http://www.slimsuite.unsw.edu.au/servers.php.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Dyson HJ, Wright PE (2005) Intrinsically unstructured proteins and their functions. Nat Rev Mol Cell Biol 6(3):197–208

    Article  CAS  Google Scholar 

  2. Tompa P (2012) Intrinsically disordered proteins: a 10-year recap. Trends Biochem Sci 37(12):509–516

    Article  CAS  Google Scholar 

  3. Diella F, Haslam N, Chica C et al (2008) Understanding eukaryotic linear motifs and their role in cell signaling and regulation. Front Biosci 13:6580–6603

    Article  CAS  Google Scholar 

  4. Wright PE, Dyson HJ (2015) Intrinsically disordered proteins in cellular signalling and regulation. Nat Rev Mol Cell Biol 16(1):18–29

    Article  CAS  Google Scholar 

  5. Tompa P, Fuxreiter M, Oldfield CJ et al (2009) Close encounters of the third kind: disordered domains and the interactions of proteins. BioEssays 31(3):328–335

    Article  CAS  Google Scholar 

  6. Davey NE, Van Roey K, Weatheritt RJ et al (2012) Attributes of short linear motifs. Mol BioSyst 8(1):268–281

    Article  CAS  Google Scholar 

  7. Tompa P, Davey NE, Gibson TJ et al (2014) A million peptide motifs for the molecular biologist. Mol Cell 55(2):161–169

    Article  CAS  Google Scholar 

  8. Gibson TJ, Dinkel H, Van Roey K et al (2015) Experimental detection of short regulatory motifs in eukaryotic proteins: tips for good practice as well as for bad. Cell Commun Signal 13:42

    Article  Google Scholar 

  9. Davey NE, Edwards RJ, Shields DC (2010) Computational identification and analysis of protein short linear motifs. Front Biosci (Landmark Ed) 15:801–825

    Article  CAS  Google Scholar 

  10. Edwards RJ, Palopoli N (2015) Computational prediction of short linear motifs from protein sequences. Methods Mol Biol 1268:89–141

    Article  CAS  Google Scholar 

  11. Edwards RJ (2019) SLiMSuite v1.8.1 (2019-05-27). Zenodo doi: https://doi.org/10.5281/zenodo.3229523

  12. Bhowmick P, Guharoy M, Tompa P (2015) Bioinformatics Approaches for Predicting Disordered Protein Motifs. Adv Exp Med Biol 870:291–318

    Article  CAS  Google Scholar 

  13. Meng F, Uversky VN, Kurgan L (2017) Comprehensive review of methods for prediction of intrinsic disorder and its molecular functions. Cell Mol Life Sci 74(17):3069–3090

    Article  CAS  Google Scholar 

  14. Davey NE, Haslam NJ, Shields DC et al (2010) SLiMSearch: a webserver for finding novel occurrences of short linear motifs in proteins, incorporating sequence context. In: Lecture Notes in Bioinformatics, vol 6282. Springer, Berlin, pp 50–61

    Google Scholar 

  15. Edwards RJ, Davey NE, Shields DC (2007) SLiMFinder: a probabilistic method for identifying over-represented, convergently evolved, short linear motifs in proteins. PLoS One 2(10):e967

    Article  Google Scholar 

  16. Palopoli N, Lythgow KT, Edwards RJ (2015) QSLiMFinder: improved short linear motif prediction using specific query protein data. Bioinformatics 31(14):2284–2293

    Article  CAS  Google Scholar 

  17. Edwards RJ, Davey NE, Shields DC (2008) CompariMotif: quick and easy comparisons of sequence motifs. Bioinformatics 24(10):1307–1309

    Article  CAS  Google Scholar 

  18. Gouw M, Michael S, Samano-Sanchez H et al (2018) The eukaryotic linear motif resource - 2018 update. Nucleic Acids Res 46(D1):D428–D434

    Article  CAS  Google Scholar 

  19. Davey NE, Shields DC, Edwards RJ (2006) SLiMDisc: short, linear motif discovery, correcting for common evolutionary descent. Nucleic Acids Res 34(12):3546–3554

    Article  CAS  Google Scholar 

  20. Camacho C, Coulouris G, Avagyan V et al (2009) BLAST+: architecture and applications. BMC Bioinformatics 10:421

    Article  Google Scholar 

  21. Davey NE, Edwards RJ, Shields DC (2007) The SLiMDisc server: short, linear motif discovery in proteins. Nucleic Acids Res 35(Web Server issue):W455–W459

    Article  Google Scholar 

  22. Meszaros B, Erdos G, Dosztanyi Z (2018) IUPred2A: context-dependent prediction of protein disorder as a function of redox state and protein binding. Nucleic Acids Res 46(W1):W329–W337

    Article  CAS  Google Scholar 

  23. Larkin MA, Blackshields G, Brown NP et al (2007) Clustal W and clustal X version 2.0. Bioinformatics 23(21):2947–2948

    Article  CAS  Google Scholar 

  24. Sievers F, Higgins DG (2014) Clustal Omega, accurate alignment of very large numbers of sequences. Methods Mol Biol 1079:105–116

    Article  CAS  Google Scholar 

  25. R Core Team (2018) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/

    Google Scholar 

  26. Davey NE, Edwards RJ, Shields DC (2010) Estimation and efficient computation of the true probability of recurrence of short linear protein sequence motifs in unrelated proteins. BMC Bioinformatics 11:14

    Article  Google Scholar 

  27. Davey NE, Cowan JL, Shields DC et al (2012) SLiMPrints: conservation-based discovery of functional motif fingerprints in intrinsically disordered protein regions. Nucleic Acids Res 40(21):10628–10641

    Article  CAS  Google Scholar 

  28. Krystkowiak I, Davey NE (2017) SLiMSearch: a framework for proteome-wide discovery and annotation of functional modules in intrinsically disordered regions. Nucleic Acids Res 45(W1):W464–W469

    Article  CAS  Google Scholar 

  29. Edwards RJ (2019) SLiMSuite example data, May 2019. Open Science Foundation doi: https://doi.org/10.17605/OSF.IO/8DTQ5

  30. Davey NE, Haslam NJ, Shields DC et al (2011) SLiMSearch 2.0: biological context for short linear motifs in proteins. Nucleic Acids Res 39(Web Server issue):W56–W60

    Article  CAS  Google Scholar 

  31. Dosztanyi Z, Csizmok V, Tompa P et al (2005) IUPred: web server for the prediction of intrinsically unstructured regions of proteins based on estimated energy content. Bioinformatics 21(16):3433–3434

    Article  CAS  Google Scholar 

  32. Dosztanyi Z, Meszaros B, Simon I (2009) ANCHOR: web server for predicting protein binding regions in disordered proteins. Bioinformatics 25(20):2745–2746

    Article  CAS  Google Scholar 

  33. Prilusky J, Felder CE, Zeev-Ben-Mordehai T et al (2005) FoldIndex: a simple tool to predict whether a given protein sequence is intrinsically unfolded. Bioinformatics 21(16):3435–3438

    Article  CAS  Google Scholar 

  34. Alonso-Lopez D, Campos-Laborie FJ, Gutierrez MA et al (2019) APID database: redefining protein-protein interaction experimental evidences and binary interactomes. Database (Oxford) 2019:baz005

    Article  Google Scholar 

  35. Vijayakumar S, Chapados BR, Schmidt KH et al (2007) The C-terminal domain of yeast PCNA is required for physical and functional interactions with Cdc9 DNA ligase. Nucleic Acids Res 35(5):1624–1637

    Article  CAS  Google Scholar 

  36. Davey NE, Haslam NJ, Shields DC et al (2010) SLiMFinder: a web server to find novel, significantly over-represented, short protein motifs. Nucleic Acids Res 38(Web Server):W534–W539

    Article  CAS  Google Scholar 

  37. Rigoutsos I, Floratos A (1998) Combinatorial pattern discovery in biological sequences: The TEIRESIAS algorithm. Bioinformatics 14(1):55–67

    Article  CAS  Google Scholar 

  38. Altenhoff AM, Boeckmann B, Capella-Gutierrez S et al (2016) Standardized benchmarking in the quest for orthologs. Nat Methods 13(5):425–430

    Article  CAS  Google Scholar 

  39. Janin J, Wodak S (1978) Conformation of amino acid side-chains in proteins. J Mol Biol 125(3):357–386

    Article  CAS  Google Scholar 

  40. Eisenberg D, Schwarz E, Komaromy M et al (1984) Analysis of membrane and surface protein sequences with the hydrophobic moment plot. J Mol Biol 179(1):125–142

    Article  CAS  Google Scholar 

  41. Jehl P, Manguy J, Shields DC et al (2016) ProViz-a web-based visualization tool to investigate the functional and evolutionary features of protein sequences. Nucleic Acids Res 44(W1):W11–W15

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the University of New South Wales. The authors would like to thank Adrian Plummer and the UNSW Science Faculty Computing unit for support in setting up the SLiMSuite servers.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard J. Edwards .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Edwards, R.J., Paulsen, K., Aguilar Gomez, C.M., Pérez-Bercoff, Å. (2020). Computational Prediction of Disordered Protein Motifs Using SLiMSuite. In: Kragelund, B.B., Skriver, K. (eds) Intrinsically Disordered Proteins. Methods in Molecular Biology, vol 2141. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-0524-0_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-0524-0_3

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-0523-3

  • Online ISBN: 978-1-0716-0524-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics