Skip to main content

EPCES and EPSVR: Prediction of B-Cell Antigenic Epitopes on Protein Surfaces with Conformational Information

  • Protocol
  • First Online:
Immunoinformatics

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2131))

Abstract

Accurate prediction of discontinuous antigenic epitopes is important for immunologic research and medical applications, but it is not an easy problem. Currently, there are only a few prediction servers available, though discontinuous epitopes constitute the majority of all B-cell antigenic epitopes. In this chapter, we describe two online servers, EPCES and EPSVR, for discontinuous epitope prediction. All methods were benchmarked by a curated independent test set, in which all antigens had no complex structures with the antibody, and their epitopes were identified by various biochemical experiments. The servers and all datasets are available at http://sysbio.unl.edu/EPCES/ and http://sysbio.unl.edu/EPSVR/.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Parker JM, Guo D, Hodges RS (1986) New hydrophilicity scale derived from high-performance liquid chromatography peptide retention data: correlation of predicted surface residues with antigenicity and X-ray-derived accessible sites. Biochemistry 25 (19):5425–5432

    Article  CAS  PubMed  Google Scholar 

  2. Emini EA, Hughes JV, Perlow DS et al (1985) Induction of hepatitis a virus-neutralizing antibody by a virus-specific synthetic peptide. J Virol 55(3):836–839

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Karplus PA, Schulz GE (1985) Prediction of chain flexibility in proteins - a tool for the selection of peptide antigens. Naturwissenschaften 72(4):212–213

    Article  CAS  Google Scholar 

  4. Kolaskar AS, Tongaonkar PC (1990) A semi-empirical method for prediction of antigenic determinants on protein antigens. FEBS Lett 276(1–2):172–174. https://doi.org/10.1016/0014-5793(90)80535-q

    Article  CAS  PubMed  Google Scholar 

  5. Larsen JE, Lund O, Nielsen M (2006) Improved method for predicting linear B-cell epitopes. Immunome Res 2:2. https://doi.org/10.1186/1745-7580-2-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Saha S, Raghava GP (2006) Prediction of continuous B-cell epitopes in an antigen using recurrent neural network. Proteins 65(1):40–48. https://doi.org/10.1002/prot.21078

    Article  CAS  PubMed  Google Scholar 

  7. Chen J, Liu H, Yang J et al (2007) Prediction of linear B-cell epitopes using amino acid pair antigenicity scale. Amino Acids 33(3):423–428. https://doi.org/10.1007/S00726-006-0485-9

    Article  CAS  PubMed  Google Scholar 

  8. El-Manzalawy Y, Dobbs D, Honavar V (2008) Predicting linear B-cell epitopes using string kernels. J Mol Recognit 21(4):243–255. https://doi.org/10.1002/jmr.893

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Blythe MJ, Flower DR (2005) Benchmarking B cell epitope prediction: underperformance of existing methods. Protein Sci 14(1):246–248. https://doi.org/10.1110/ps.041059505

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Greenbaum JA, Andersen PH, Blythe M et al (2007) Towards a consensus on datasets and evaluation metrics for developing B-cell epitope prediction tools. J Mol Recognit 20(2):75–82. https://doi.org/10.1002/jmr.815

    Article  CAS  PubMed  Google Scholar 

  11. Sweredoski MJ, Baldi P (2009) COBEpro: a novel system for predicting continuous B-cell epitopes. Protein Eng Des Sel 22(3):113–120. https://doi.org/10.1093/protein/gzn075

    Article  CAS  PubMed  Google Scholar 

  12. Yang X, Yu X (2009) An introduction to epitope prediction methods and software. Rev Med Virol 19(2):77–96. https://doi.org/10.1002/rmv.602

    Article  CAS  PubMed  Google Scholar 

  13. MHV VR (1996) Mapping epitope structure and activity: from one-dimensional prediction to four-dimensional description of antigenic specificity. Methods 9(3):465–472

    Article  Google Scholar 

  14. Kulkarni-Kale U, Bhosle S, Kolaskar AS (2005) CEP: a conformational epitope prediction server. Nucleic Acids Res 33(Web Server issue):W168–W171. https://doi.org/10.1093/nar/gki460

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Andersen PH, Nielsen M, Lund O (2006) Prediction of residues in discontinuous B-cell epitopes using protein 3D structures. Protein Sci 15(11):2558–2567. https://doi.org/10.1110/Ps.062405906

    Article  CAS  Google Scholar 

  16. Sweredoski MJ, Baldi P (2008) PEPITO: improved discontinuous B-cell epitope prediction using multiple distance thresholds and half sphere exposure. Bioinformatics 24(12):1459–1460. https://doi.org/10.1093/bioinformatics/btn199

    Article  CAS  PubMed  Google Scholar 

  17. Ponomarenko J, Bui HH, Li W et al (2008) ElliPro: a new structure-based tool for the prediction of antibody epitopes. BMC Bioinformatics 9(514). https://doi.org/10.1186/1471-2105-9-514

  18. Sun J, Wu D, Xu T et al (2009) SEPPA: a computational server for spatial epitope prediction of protein antigens. Nucleic Acids Res 37(Web Server issue):W612–W616. https://doi.org/10.1093/nar/gkp417

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Rubinstein ND, Mayrose I, Pupko T (2009) A machine-learning approach for predicting B-cell epitopes. Mol Immunol 46(5):840–847. https://doi.org/10.1016/j.molimm.2008.09.009

    Article  CAS  PubMed  Google Scholar 

  20. Rubinstein ND, Mayrose I, Martz E et al (2009) Epitopia: a web-server for predicting B-cell epitopes. BMC Bioinformatics 10:–287. https://doi.org/10.1186/1471-2105-10-287

    Article  PubMed  PubMed Central  Google Scholar 

  21. Liang S, Zheng D, Zhang C et al (2009) Prediction of antigenic epitopes on protein surfaces by consensus scoring. BMC Bioinformatics 10:302. https://doi.org/10.1186/1471-2105-10-302

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Liang S, Zheng D, Standley DM et al (2010) EPSVR and EPMeta: prediction of antigenic epitopes using support vector regression and multiple server results. BMC Bioinformatics 11:381. https://doi.org/10.1186/1471-2105-11-381

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Ponomarenko JV, Bourne PE (2007) Antibody-protein interactions: benchmark datasets and prediction tools evaluation. BMC Struct Biol 7:64. https://doi.org/10.1186/1472-6807-7-64

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Mintseris J, Wiehe K, Pierce B et al (2005) Protein-Protein Docking Benchmark 2.0: an update. Proteins 60(2):214–216. https://doi.org/10.1002/prot.20560

    Article  CAS  PubMed  Google Scholar 

  25. Huang J, Honda W (2006) CED: a conformational epitope database. BMC Immunol 7:7. https://doi.org/10.1186/1471-2172-7-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Fan RE, Chen PH, Lin CJ (2005) Working set selection using second order information for training support vector machines. J Mach Learn Res 6:1889–1918

    Google Scholar 

  27. Liang S, Zhang J, Zhang S et al (2004) Prediction of the interaction site on the surface of an isolated protein structure by analysis of side chain energy scores. Proteins 57(3):548–557

    Article  CAS  PubMed  Google Scholar 

  28. Jones S, Thornton JM (1997) Analysis of protein-protein interaction sites using surface patches. J Mol Biol 272(1):121–132

    Article  CAS  PubMed  Google Scholar 

  29. Liang S, Zhang C, Liu S et al (2006) Protein binding site prediction using an empirical scoring function. Nucleic Acids Res 34(13):3698–3707. https://doi.org/10.1093/nar/gkl454

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Jones S, Thornton JM (1997) Prediction of protein-protein interaction sites using patch analysis. J Mol Biol 272(1):133–143. https://doi.org/10.1006/jmbi.1997.1233

    Article  CAS  PubMed  Google Scholar 

  31. Pellequer JL, Westhof E, Van Regenmortel MH (1993) Correlation between the location of antigenic sites and the prediction of turns in proteins. Immunol Lett 36(1):83–99

    Article  CAS  PubMed  Google Scholar 

  32. Zhou HX, Qin S (2007) Interaction-site prediction for protein complexes: a critical assessment. Bioinformatics 23(17):2203–2209. https://doi.org/10.1093/bioinformatics/btm323

    Article  CAS  PubMed  Google Scholar 

  33. Henikoff S, Henikoff JG (1992) Amino acid substitution matrices from protein blocks. Proc Natl Acad Sci U S A 89(22):10915–10919

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Liang S, Grishin NV (2004) Effective scoring function for protein sequence design. Proteins 54(2):271–281. https://doi.org/10.1002/prot.10560

    Article  CAS  PubMed  Google Scholar 

  35. Jones S, Thornton JM (1997) Analysis of protein-protein interaction sites using surface patches. J Mol Biol 272(1):121–132. https://doi.org/10.1006/jmbi.1997.1234

    Article  CAS  PubMed  Google Scholar 

  36. Chou PY, Fasman GD (1978) Empirical predictions of protein conformation. Annu Rev Biochem 47:251–276. https://doi.org/10.1146/annurev.bi.47.070178.001343

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The work is supported by funding under C.Z.’s startup funds from the University of Nebraska, Lincoln, NE. This work was completed utilizing the Holland Computing Center of the University of Nebraska.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chi Zhang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Liang, S., Zheng, D., Yao, B., Zhang, C. (2020). EPCES and EPSVR: Prediction of B-Cell Antigenic Epitopes on Protein Surfaces with Conformational Information. In: Tomar, N. (eds) Immunoinformatics. Methods in Molecular Biology, vol 2131. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-0389-5_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-0389-5_16

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-0388-8

  • Online ISBN: 978-1-0716-0389-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics