Skip to main content

Monitoring Electrical Activity in Drosophila Circadian Output Neurons

  • Protocol
  • First Online:
Circadian Clocks

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2130))

Abstract

Drosophila melanogaster is a powerful model organism used to study circadian rhythms, historically for elucidating the molecular basis of the clock and, more recently, for allowing for dissection of neural circuits underlying rhythmic behavior. The fly can be used to investigate the neuronal basis of complex behaviors at single-neuron resolution. Patch clamp electrophysiology permits single-neuron recording of resting membrane potential and action potential firing in response to genetic or environmental manipulations or application of drugs and neurotransmitters. Here we describe a protocol for dissecting Drosophila brains for electrophysiology, setting up and using a patch clamp system, and analyzing firing data around the circadian day and in stimulation-response experiments to test for functional neuronal connectivity in circadian circuits.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 149.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Konopka RJ, Benzer S (1971) Clock mutants of Drosophila melanogaster. Proc Natl Acad Sci U S A 68:2112–2116

    Article  CAS  Google Scholar 

  2. Sehgal A, Price JL, Man B, Young MW (1994) Loss of circadian behavioral rhythms and per RNA oscillations in the Drosophila mutant timeless. Science 263:1603–1606

    Article  CAS  Google Scholar 

  3. Rutila JE, Suri V, Le M, So WV, Rosbash M, Hall JC (1998) CYCLE is a second bHLH-PAS clock protein essential for circadian rhythmicity and transcription of Drosophila period and timeless. Cell 93:805–814

    Article  CAS  Google Scholar 

  4. Stanewsky R, Kaneko M, Emery P, Beretta B, Wager-Smith K, Kay SA, Rosbash M, Hall JC (1998) The cryb mutation identifies cryptochrome as a circadian photoreceptor in Drosophila. Cell 95:681–692

    Article  CAS  Google Scholar 

  5. Emery P, So WV, Kaneko M, Hall JC, Rosbash M (1998) CRY, a Drosophila clock and light-regulated cryptochrome, is a major contributor to circadian rhythm resetting and photosensitivity. Cell 95:669–679

    Article  CAS  Google Scholar 

  6. Sheeba V, Gu H, Sharma VK, O'Dowd DK, Holmes TC (2007) Circadian- and light-dependent regulation of resting membrane potential and spontaneous action potential firing of Drosophila circadian pacemaker neurons. J Neurophysiol 99:976–988

    Article  Google Scholar 

  7. Cao G, Nitabach MN (2008) Circadian control of membrane excitability in Drosophila melanogaster lateral ventral clock neurons. J Neurosci 28:6493–6501

    Article  CAS  Google Scholar 

  8. Sheeba V, Fogle KJ, Kaneko M, Rashid S, Chou YT, Sharma VK, Holmes TC (2008) Large ventral lateral neurons modulate arousal and sleep in Drosophila. Curr Biol 18:1537–1545

    Article  CAS  Google Scholar 

  9. Flourakis M, Kula-Eversole E, Hutchison AL, Han TH, Aranda K, Moose DL, White KP, Dinner AR, Lear BC, Ren D, Diekman CO, Raman IM, Allada R (2015) A conserved bicycle model for circadian clock control of membrane excitability. Cell 162:836–848

    Article  CAS  Google Scholar 

  10. Depetris-Chauvin A, Berni J, Aranovich EJ, Muraro NI, Beckwith EJ, Ceriani MF (2011) Adult-specific electrical silencing of pacemaker neurons uncouples molecular clock from circadian outputs. Curr Biol 21:1783–1793

    Article  CAS  Google Scholar 

  11. Yao Z, Macara AM, Lelito KR, Minosyan TY, Shafer OT (2012) Analysis of functional neuronal connectivity in the Drosophila brain. J Neurophysiol 108:684–696

    Article  CAS  Google Scholar 

  12. Gu H, O'Dowd DK (2006) Cholinergic synaptic transmission in adult Drosophila Kenyon cells in situ. J Neurosci 26:265–272

    Article  CAS  Google Scholar 

  13. Marx M, Günter RH, Hucko W, Radnikow G, Feldmeyer D (2012) Improved biocytin labeling and neuronal 3D reconstruction. Nat Protoc 7:394–407

    Article  CAS  Google Scholar 

  14. Sherman-Gold R (2012) The Axon guide: a guide to electrophysiology and biophysics laboratory techniques

    Google Scholar 

  15. Barber AF, Erion R, Holmes TC, Sehgal A (2016) Circadian and feeding cues integrate to drive rhythms of physiology in Drosophila insulin-producing cells. Genes Dev 30:2596–2606

    Article  CAS  Google Scholar 

  16. Fogle KJ, Parson KG, Dahm NA, Holmes TC (2011) CRYPTOCHROME is a blue-light sensor that regulates neuronal firing rate. Science 331:1409–1413

    Article  CAS  Google Scholar 

  17. Muraro NI, Ceriani MF (2015) Acetylcholine from visual circuits modulates the activity of arousal neurons in Drosophila. J Neurosci 35:16315–16327

    Article  CAS  Google Scholar 

  18. Murthy M, Turner G (2013) Whole-cell in vivo patch-clamp recordings in the Drosophila brain. Cold Spring Harb Protoc 2013:140–148

    PubMed  Google Scholar 

  19. Sheeba V, Sharma VK, Gu H, Chou YT, O'Dowd DK, Holmes TC (2008) Pigment dispersing factor-dependent and -independent circadian locomotor behavioral rhythms. J Neurosci 28:217–227

    Article  CAS  Google Scholar 

  20. Figi T, Lewis TM Barry PH liquid junction potential corrections. Axobits 39:6–9

    Google Scholar 

Download references

Acknowledgments

We thank Todd Holmes and Keri Fogle for sharing their expertise in Drosophila electrophysiology. Our research in this area is supported by NIH grant R37 NS048471.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amita Sehgal .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Barber, A.F., Sehgal, A. (2021). Monitoring Electrical Activity in Drosophila Circadian Output Neurons. In: Brown, S.A. (eds) Circadian Clocks. Methods in Molecular Biology, vol 2130. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-0381-9_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-0381-9_17

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-0380-2

  • Online ISBN: 978-1-0716-0381-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics