Skip to main content

Biolistic Approach for Transient Gene Expression Studies in Plants

  • Protocol
  • First Online:
Biolistic DNA Delivery in Plants

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2124))

Abstract

Since its inception in the late 1980s, the delivery of exogenous nucleic acids into living cells via high-velocity microprojectiles (biolistic, or microparticle bombardment) has been an invaluable tool for both agricultural and fundamental plant research. Here, we review the technical aspects and the major applications of the biolistic method for studies involving transient gene expression in plant cells. These studies cover multiple areas of plant research, including gene expression, protein subcellular localization and cell-to-cell movement, plant virology, silencing, and the more recently developed targeted genome editing via transient expression of customized endonucleases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Klein TM, Wolf ED, Wu R, Sanford JC (1987) High-velocity microprojectiles for delivering nucleic-acids into living cells. Nature 327:70ā€“73

    ArticleĀ  CASĀ  Google ScholarĀ 

  2. Sanford JC (1988) The biolistic process. Trends Biotechnol 6:299ā€“302

    ArticleĀ  CASĀ  Google ScholarĀ 

  3. Taylor NJ, Fauquet CM (2002) Microparticle bombardment as a tool in plant science and agricultural biotechnology. DNA Cell Biol 21:963ā€“977

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  4. Ueki S, Lacroix B, Krichevsky A, Lazarowitz SG, Citovsky V (2009) Functional transient genetic transformation of Arabidopsis leaves by biolistic bombardment. Nat Protoc 4:71ā€“77

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  5. Smith FD, Harpending PR, Sanford JC (1992) Biolistic transformation of prokaryotes: factors that affect biolistic transformation of very small cells. J Gen Microbiol 138:239ā€“248

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  6. Mayfield SP, Kindle KL (1990) Stable nuclear transformation of Chlamydomonas reinhardtii by using a C. reinhardtii gene as the selectable marker. Proc Natl Acad Sci U S A 87:2087ā€“2091

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  7. Armaleo D, Ye GN, Klein TM, Shark KB, Sanford JC, Johnston SA (1990) Biolistic nuclear transformation of Saccharomyces cerevisiae and other fungi. Curr Genet 17:97ā€“103

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  8. Cheng L, Ziegelhoffer PR, Yang NS (1993) In vivo promoter activity and transgene expression in mammalian somatic tissues evaluated by using particle bombardment. Proc Natl Acad Sci U S A 90:4455ā€“4459

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  9. Yang NS, Sun WH (1995) Gene gun and other non-viral approaches for cancer gene therapy. Nat Med 1:481ā€“483

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  10. Kapila J, De Rycke R, Van Montagu M, Angenon G (1997) An Agrobacterium-mediated transient gene expression system for intact leaves. Plant Sci 122:101ā€“108

    ArticleĀ  CASĀ  Google ScholarĀ 

  11. Nam J, Matthysse AG, Gelvin SB (1997) Differences in susceptibility of Arabidopsis ecotypes to crown gall disease may result from a deficiency in T-DNA integration. Plant Cell 9:317ā€“333

    CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  12. Junker B, Zimny J, Luhrs R, Lorz H (1987) Transient expression of chimaeric genes in dividing and non-dividing cereal protoplasts after PEG-induced DNA uptake. Plant Cell Rep 6:329ā€“332

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  13. Wang YC, Klein TM, Fromm M, Cao J, Sanford JC, Wu R (1988) Transient expression of foreign genes in rice, wheat and soybean cells following particle bombardment. Plant Mol Biol 11:433ā€“439

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  14. Luthra R, Varsha DRK, Srivastava AK, Kumar S (1997) Microprojectile mediated plant transformation: a bibliographic search. Euphytica 95:269ā€“294

    ArticleĀ  CASĀ  Google ScholarĀ 

  15. Finer JJ, Finer KR, Ponappa T (1999) Particle bombardment mediated transformation. Curr Top Microbiol Immunol 240:59ā€“80

    CASĀ  PubMedĀ  Google ScholarĀ 

  16. Jelly NS, Valat L, Walter B, Maillot P (2014) Transient expression assays in grapevine: a step towards genetic improvement. Plant Biotechnol J 12:1231ā€“1245

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  17. Osaki Y, Kodama Y (2017) Particle bombardment and subcellular protein localization analysis in the aquatic plant Egeria densa. Peer J 5:e3779

    ArticleĀ  PubMedĀ  CASĀ  PubMed CentralĀ  Google ScholarĀ 

  18. Shang Y, Schwinn KE, Bennett MJ, Hunter DA, Waugh TL, Pathirana NN et al (2007) Methods for transient assay of gene function in floral tissues. Plant Methods 3:1

    ArticleĀ  PubMedĀ  PubMed CentralĀ  CASĀ  Google ScholarĀ 

  19. Hunold R, Bronner R, Hahne G (1994) Early events in microprojectile bombardment - cell viability and particle location. Plant J 5:593ā€“604

    ArticleĀ  CASĀ  Google ScholarĀ 

  20. Boynton JE, Gillham NW, Harris EH, Hosler JP, Johnson AM, Jones AR et al (1988) Chloroplast transformation in Chlamydomonas with high-velocity microprojectiles. Science 240:1534ā€“1538

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  21. Daniell H, Vivekananda J, Nielsen BL, Ye GN, Tewari KK, Sanford JC (1990) Transient foreign gene expression in chloroplasts of cultured tobacco cells after biolistic delivery of chloroplast vectors. Proc Natl Acad Sci U S A 87:88ā€“92

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  22. Maliga P (2004) Plastid transformation in higher plants. Annu Rev Plant Biol 55:289ā€“313

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  23. Hibberd JM, Linley PJ, Khan MS, Gray JC (1998) Transient expression of green fluorescent protein in various plastid types following microprojectile bombardment. Plant J 16:627ā€“632

    ArticleĀ  CASĀ  Google ScholarĀ 

  24. Randolph-Anderson BL, Boynton JE, Gillham NW, Harris EH, Johnson AM, Dorthu MP et al (1993) Further characterization of the respiratory deficient dum-1 mutation of Chlamydomonas reinhardtii and its use as a recipient for mitochondrial transformation. Mol Gen Genet 236:235ā€“244

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  25. Larosa V, Coosemans N, Motte P, Bonnefoy N, Remacle C (2012) Reconstruction of a human mitochondrial complex I mutation in the unicellular green alga Chlamydomonas. Plant J 70:759ā€“768

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  26. Johnston SA, Anziano PQ, Shark K, Sanford JC, Butow RA (1988) Mitochondrial transformation in yeast by bombardment with microprojectiles. Science 240:1538ā€“1541

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  27. Montanari A, Francisci S, Fazzi D'orsi M, Bianchi MM (2014) Strain-specific nuclear genetic background differentially affects mitochondria-related phenotypes in Saccharomyces cerevisiae. Microbiol Open 3:288ā€“298

    ArticleĀ  CASĀ  Google ScholarĀ 

  28. Hadi MZ, Mcmullen MD, Finer JJ (1996) Transformation of 12 different plasmids into soybean via particle bombardment. Plant Cell Rep 15:500ā€“505

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  29. Lu Y, Chen X, Wu Y, Wang Y, He Y, Wu Y (2013) Directly transforming PCR-amplified DNA fragments into plant cells is a versatile system that facilitates the transient expression assay. PLoS One 8:e57171

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  30. Dalakouras A, Wassenegger M, Mcmillan JN, Cardoza V, Maegele I, Dadami E et al (2016) Induction of silencing in plants by high-pressure spraying of in vitro-synthesized small RNAs. Front Plant Sci 7:1327

    ArticleĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  31. Ditt RF, Nester EW, Comai L (2001) Plant gene expression response to Agrobacterium tumefaciens. Proc Natl Acad Sci U S A 98:10954ā€“10959

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  32. Ditt RF, Nester E, Comai L (2005) The plant cell defense and agrobacterium tumefaciens. FEMS Microbiol Lett 247:207ā€“213

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  33. Ditt RF, Kerr KF, De Figueiredo P, Delrow J, Comai L, Nester EW (2006) The Arabidopsis thaliana transcriptome in response to Agrobacterium tumefaciens. Mol Plant-Microbe Interact 19:665ā€“681

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  34. Lee CW, Efetova M, Engelmann JC, Kramell R, Wasternack C, Ludwig-MĆ¼ller J et al (2009) Agrobacterium tumefaciens promotes tumor induction by modulating pathogen defense in Arabidopsis thaliana. Plant Cell 21:2948ā€“2962

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  35. Gohlke J, Deeken R (2014) Plant responses to Agrobacterium tumefaciens and crown gall development. Front Plant Sci 5:155

    ArticleĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  36. Duan K, Willig CJ, De Tar JR, Spollen WG, Zhang ZJ (2018) Transcriptomic analysis of Arabidopsis seedlings in response to an Agrobacterium-mediated transformation process. Mol Plant-Microbe Interact 31:445ā€“459

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  37. Pruss GJ, Nester EW, Vance V (2008) Infiltration with Agrobacterium tumefaciens induces host defense and development-dependent responses in the infiltrated zone. Mol Plant-Microbe Interact 21:1528ā€“1538

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  38. Zhao J, Morozova N, Williams L, Libs L, Avivi Y, Grafi G (2001) Two phases of chromatin decondensation during dedifferentiation of plant cells: distinction between competence for cell fate switch and a commitment for s phase. J Biol Chem 276:22772ā€“22778

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  39. Tessadori F, Chupeau MC, Chupeau Y, Knip M, Germann S, Van Driel R et al (2007) Large-scale dissociation and sequential reassembly of pericentric heterochromatin in dedifferentiated Arabidopsis cells. J Cell Sci 120:1200ā€“1208

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  40. Grafi G, Chalifa-Caspi V, Nagar T, Plaschkes I, Barak S, Ransbotyn V (2011) Plant response to stress meets dedifferentiation. Planta 233:433ā€“438

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  41. Chupeau MC, Granier F, Pichon O, Renou JP, Gaudin V, Chupeau Y (2013) Characterization of the early events leading to totipotency in an Arabidopsis protoplast liquid culture by temporal transcript profiling. Plant Cell 25:2444ā€“2463

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  42. Leon J, Rojo E, Sanchez-Serrano JJ (2001) Wound signalling in plants. J Exp Bot 52:1ā€“9

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  43. Reymond P, Weber H, Damond M, Farmer EE (2000) Differential gene expression in response to mechanical wounding and insect feeding in Arabidopsis. Plant Cell 12:707ā€“720

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  44. Iida A, Yamashita T, Yamada Y, Morikawa H (1991) Efficiency of particle-bombardment-mediated transformation is influenced by cell-cycle stage in synchronized cultured-cells of tobacco. Plant Physiol 97:1585ā€“1587

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  45. Yamashita T, Iida A, Morikawa H (1991) Evidence that more than 90-percent of beta-glucuronidase-expressing cells after particle bombardment directly receive the foreign gene in their nucleus. Plant Physiol 97:829ā€“831

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  46. Gisel A, Rothen B, Iglesias VA, Potrykus I, Sautter C (1998) In situ monitoring of DNA: the plant nuclear envelope allows passage of short DNA fragments. Plant J 16:621ā€“626

    ArticleĀ  CASĀ  Google ScholarĀ 

  47. Lacroix B, Citovsky V (2013) The roles of bacterial and host plant factors in Agrobacterium-mediated genetic transformation. Int J Dev Biol 57:467ā€“481

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  48. Agius F, Amaya I, Botella MA, Valpuesta V (2005) Functional analysis of homologous and heterologous promoters in strawberry fruits using transient expression. J Exp Bot 56:37ā€“46

    CASĀ  PubMedĀ  Google ScholarĀ 

  49. Jose-Estanyol M, Puigdomenech P (2012) Cellular localization of the embryo-specific hybrid PRP from Zea mays, and characterization of promoter regulatory elements of its gene. Plant Mol Biol 80:325ā€“335

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  50. Morello L, Bardini M, Cricri M, Sala F, Breviario D (2006) Functional analysis of DNA sequences controlling the expression of the rice OsCDPK2 gene. Planta 223:479ā€“491

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  51. Baum K, Groning B, Meier I (1997) Improved ballistic transient transformation conditions for tomato fruit allow identification of organ-specific contributions of I-box and G-box to the RBCS2 promoter activity. Plant J 12:463ā€“469

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  52. Vain P, Finer KR, Engler DE, Pratt RC, Finer JJ (1996) Intron-mediated enhancement of gene expression in maize (Zea mays L.) and bluegrass (Poa pratensis L.). Plant Cell Rep 15:489ā€“494

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  53. Goff SA, Klein TM, Roth BA, Fromm ME, Cone KC, Radicella JP et al (1990) Transactivation of anthocyanin biosynthetic genes following transfer of B regulatory genes into maize tissues. EMBO J 9:2517ā€“2522

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  54. Sainz MB, Goff SA, Chandler VL (1997) Extensive mutagenesis of a transcriptional activation domain identifies single hydrophobic and acidic amino acids important for activation in vivo. Mol Cell Biol 17:115ā€“122

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  55. Xie Z, Zhang ZL, Hanzlik S, Cook E, Shen QJ (2007) Salicylic acid inhibits gibberellin-induced alpha-amylase expression and seed germination via a pathway involving an abscisic-acid-inducible WRKY gene. Plant Mol Biol 64:293ā€“303

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  56. Lao J, Oikawa A, Bromley JR, Mcinerney P, Suttangkakul A, Smith-Moritz AM et al (2014) The plant glycosyltransferase clone collection for functional genomics. Plant J 79:517ā€“529

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  57. Alinsug MV, Chen FF, Luo M, Tai R, Jiang LW, Wu KQ (2012) Subcellular localization of class II HDAs in Arabidopsis thaliana: Nucleocytoplasmic shuttling of HDA15 is driven by light. PLoS One 7:e30846

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  58. Edmondson AC, Song DQ, Alvarez LA, Wall MK, Almond D, Mcclellan DA et al (2005) Characterization of a mitochondrially targeted single-stranded DNA-binding protein in Arabidopsis thaliana. Mol Gen Genomics 273:115ā€“122

    ArticleĀ  CASĀ  Google ScholarĀ 

  59. Kuijt SJ, Lamers GE, Rueb S, Scarpella E, Ouwerkerk PB, Spaink HP et al (2004) Different subcellular localization and trafficking properties of KNOX class 1 homeodomain proteins from rice. Plant Mol Biol 55:781ā€“796

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  60. Moriguchi K, Suzuki T, Ito Y, Yamazaki Y, Niwa Y, Kurata N (2005) Functional isolation of novel nuclear proteins showing a variety of subnuclear localizations. Plant Cell 17:389ā€“403

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  61. Levy A, El-Mochtar C, Wang C, Goodin M, Orbovic V (2018) A new toolset for protein expression and subcellular localization studies in citrus and its application to Citrus tristeza virus proteins. Plant Methods 14:2

    ArticleĀ  PubMedĀ  PubMed CentralĀ  CASĀ  Google ScholarĀ 

  62. Dangol S, Singh R, Chen Y, Jwa NS (2017) Visualization of multicolored in vivo organelle markers for co-localization studies in Oryza sativa. Mol Cells 40:828ā€“836

    CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  63. Hollender CA, Liu Z (2010) Bimolecular fluorescence complementation (BiFC) assay for protein-protein interaction in onion cells using the Helios gene gun. J Vis Exp 40:e1963

    Google ScholarĀ 

  64. Lacroix B, Citovsky V (2015) Nopaline-type ti plasmid of Agrobacterium encodes a VirF-like functional F-box protein. Sci Rep 5:16610

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  65. Ueki S, Citovsky V (2011) To gate, or not to gate: regulatory mechanisms for intercellular protein transport and virus movement in plants. Mol Plant 4:782ā€“793

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  66. Itaya A, Hickman H, Bao Y, Nelson RS, Ding B (1997) Cell-to-cell trafficking of cucumber mosaic virus movement protein: green fluorescent protein fusion produced by biolistic gene bombardment in tobacco. Plant J 12:1223ā€“1230

    ArticleĀ  CASĀ  Google ScholarĀ 

  67. Ueki S, Meyers BL, Yasmin F, Citovsky V (2010) A cell-to-cell macromolecular transport assay in planta utilizing biolistic bombardment. J Vis Exp 42:e2208

    Google ScholarĀ 

  68. Xiong R, Wu J, Zhou Y, Zhou X (2008) Identification of a movement protein of the Tenuivirus rice stripe virus. J Virol 82:12304ā€“12311

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  69. Oparka KJ, Roberts AG, Boevink P, Santa Cruz S, Roberts I, Pradel KS et al (1999) Simple, but not branched, plasmodesmata allow the nonspecific trafficking of proteins in developing tobacco leaves. Cell 97:743ā€“754

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  70. Gal-On A, Meiri E, Huet H, Hua WJ, Raccah B, Gaba V (1995) Particle bombardment drastically increases the infectivity of cloned DNA of zucchini yellow mosaic potyvirus. J Gen Virol 76:3223ā€“3227

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  71. Gal-On A, Meiri E, Elman C, Gray DJ, Gaba V (1997) Simple hand-held devices for the efficient infection of plants with viral-encoding constructs by particle bombardment. J Virol Methods 64:103ā€“110

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  72. Briddon RW, Liu S, Pinner MS, Markham PG (1998) Infectivity of african cassava mosaic virus clones to cassava by biolistic inoculation. Arch Virol 143:2487ā€“2492

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  73. Brown JK, Ostrow KM, Idris AM, Stenger DC (1999) Biotic, molecular, and phylogenetic characterization of Bean calico mosaic virus, a distinct Begomovirus species with affiliation in the squash leaf curl virus cluster. Phytopathology 89:273ā€“280

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  74. Canto T, Prior DA, Hellwald KH, Oparka KJ, Palukaitis P (1997) Characterization of cucumber mosaic virus. IV Movement protein and coat protein are both essential for cell-to-cell movement of cucumber mosaic virus. Virology 237:237ā€“248

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  75. Lange M, Yellina AL, Orashakova S, Becker A (2013) Virus-induced gene silencing (VIGS) in plants: an overview of target species and the virus-derived vector systems. Methods Mol Biol 975:1ā€“14

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  76. Velasquez AC, Chakravarthy S, Martin GB (2009) Virus-induced gene silencing (VIGS) in Nicotiana benthamiana and tomato. J Vis Exp 28:1292

    Google ScholarĀ 

  77. Sasaki S, Yamagishi N, Yoshikawa N (2011) Efficient virus-induced gene silencing in apple, pear and japanese pear using apple latent spherical virus vectors. Plant Methods 7:15

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  78. Zhang C, Yang C, Whitham SA, Hill JH (2009) Development and use of an efficient DNA-based viral gene silencing vector for soybean. Mol Plant-Microbe Interact 22:123ā€“131

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  79. Beyene G, Chauhan RD, Taylor NJ (2017) A rapid virus-induced gene silencing (VIGS) method for assessing resistance and susceptibility to cassava mosaic disease. Virol J 14:47

    ArticleĀ  PubMedĀ  PubMed CentralĀ  CASĀ  Google ScholarĀ 

  80. Budhagatapalli N, Schedel S, Gurushidze M, Pencs S, Hiekel S, Rutten T et al (2016) A simple test for the cleavage activity of customized endonucleases in plants. Plant Methods 12:18

    ArticleĀ  PubMedĀ  PubMed CentralĀ  CASĀ  Google ScholarĀ 

  81. Zhang Y, Liang Z, Zong Y, Wang Y, Liu J, Chen K et al (2016) Efficient and transgene-free genome editing in wheat through transient expression of CRISPS/Cas9 DNA or RNA. Nat Commun 7:12617

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  82. Svitashev S, Schwartz C, Lenderts B, Young JK, Cigan AM (2016) Genome editing in maize directed by CRISPS-Cas9 ribonucleoprotein complexes. Nat Commun 7:13274

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  83. Martin-Ortigosa S, Wang K (2014) Proteolistics: a biolistic method for intracellular delivery of proteins. Transgenic Res 23:743ā€“756

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  84. Martin-Ortigosa S, Peterson DJ, Valenstein JS, Lin VS, Trewyn BG, Lyznik LA et al (2014) Mesoporous silica nanoparticle-mediated intracellular CRE protein delivery for maize genome editing via loxp site excision. Plant Physiol 164:537ā€“547

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  85. Martin-Ortigosa S, Wang K (2019) Proteolistics: a protein delivery method. In: Rustgi S, Lup H (eds) Biolistic DNA delivery in plants. Springer, New York, NY

    Google ScholarĀ 

  86. O'brien JA, Lummis SC (2011) Nano-biolistics: a method of biolistic transfection of cells and tissues using a gene gun with novel nanometer-sized projectiles. BMC Biotechnol 11:66

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  87. Joldersma D, Liu Z (2018) Plant genetics enters the nano age? J Integr Plant Biol 60:446ā€“447

    ArticleĀ  PubMedĀ  Google ScholarĀ 

Download references

Acknowledgments

The work in the VC laboratory is supported by grants from USDA/NIFA, NIH, NSF, and BARD to V.C.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to BenoƮt Lacroix .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

Ā© 2020 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Lacroix, B., Citovsky, V. (2020). Biolistic Approach for Transient Gene Expression Studies in Plants. In: Rustgi, S., Luo, H. (eds) Biolistic DNA Delivery in Plants. Methods in Molecular Biology, vol 2124. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-0356-7_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-0356-7_6

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-0355-0

  • Online ISBN: 978-1-0716-0356-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics