Skip to main content

Establishment of a Standardized Vaccine Protocol for the Analysis of Protective Immune Responses During Experimental Trypanosome Infections in Mice

  • Protocol
  • First Online:
Trypanosomatids

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2116))

Abstract

To date, trypanosomosis control in humans and animals is achieved by a combination of parasitological screening and treatment. While this approach has successfully brought down the number of reported T. b. gambiense Human African Trypanosomosis (HAT) cases, the method does not offer a sustainable solution for animal trypanosomosis (AT). The main reasons for this are (i) the worldwide distribution of AT, (ii) the wide range of insect vectors involved in transmission of AT, and (iii) the existence of a wildlife parasite reservoir that can serve as a source for livestock reinfection. Hence, in order to control livestock trypanosomosis the only viable long-term solution is an effective antitrypanosome vaccination strategy. Over the last decades, multiple vaccine approaches have been proposed. Despite repeated reports of promising experimental approaches, none of those made it to a field applicable vaccine format. This failure can in part be attributed to flaws in the experimental design that favor a positive laboratory result. This chapter provides a vaccine protocol that should allow for a proper outcome prediction in experimental anti-AT vaccine approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Cnops J, Magez S, De Trez C (2015) Escape mechanisms of African trypanosomes: why trypanosomosis is keeping us awake. Parasitology 142(3):417–427. https://doi.org/10.1017/S0031182014001838

    Article  PubMed  Google Scholar 

  2. Pinger J, Chowdhury S, Papavasiliou FN (2017) Variant surface glycoprotein density defines an immune evasion threshold for African trypanosomes undergoing antigenic variation. Nat Commun 8(1):828. https://doi.org/10.1038/s41467-017-00959-w

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Koumandou VL, Boehm C, Horder KA, Field MC (2013) Evidence for recycling of invariant surface transmembrane domain proteins in African trypanosomes. Eukaryot Cell 12(2):330–342. https://doi.org/10.1128/EC.00273-12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Ziegelbauer K, Multhaup G, Overath P (1992) Molecular characterization of two invariant surface glycoproteins specific for the bloodstream stage of Trypanosoma brucei. J Biol Chem 267(15):10797–10803

    CAS  PubMed  Google Scholar 

  5. Engstler M, Pfohl T, Herminghaus S, Boshart M, Wiegertjes G, Heddergott N, Overath P (2007) Hydrodynamic flow-mediated protein sorting on the cell surface of trypanosomes. Cell 131(3):505–515. https://doi.org/10.1016/j.cell.2007.08.046

    Article  CAS  PubMed  Google Scholar 

  6. Altman MO, Angeletti D, Yewdell JW (2018) Antibody immunodominance: the key to understanding influenza virus antigenic drift. Viral Immunol 31(2):142–149. https://doi.org/10.1089/vim.2017.0129

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. La Greca F, Magez S (2011) Vaccination against trypanosomiasis: can it be done or is the trypanosome truly the ultimate immune destroyer and escape artist? Hum Vaccin 7(11):1225–1233. https://doi.org/10.4161/hv.7.11.18203

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Black SJ, Mansfield JM (2016) Prospects for vaccination against pathogenic African trypanosomes. Parasite Immunol 38(12):735–743. https://doi.org/10.1111/pim.12387

    Article  CAS  PubMed  Google Scholar 

  9. Wong R, Bhattacharya D (2018) Basics of memory B-cell responses: lessons from and for the real world. Immunology. https://doi.org/10.1111/imm.13019

  10. Lambert PH, Liu M, Siegrist CA (2005) Can successful vaccines teach us how to induce efficient protective immune responses? Nat Med 11(4 Suppl):S54–S62. https://doi.org/10.1038/nm1216

    Article  CAS  PubMed  Google Scholar 

  11. Radwanska M, Magez S, Dumont N, Pays A, Nolan D, Pays E (2000) Antibodies raised against the flagellar pocket fraction of Trypanosoma brucei preferentially recognize HSP60 in cDNA expression library. Parasite Immunol 22(12):639–650

    Article  CAS  Google Scholar 

  12. Li SQ, Yang WB, Ma LJ, Xi SM, Chen QL, Song XW, Kang J, Yang LZ (2009) Immunization with recombinant actin from Trypanosoma evansi induces protective immunity against T. evansi, T. equiperdum and T. b. brucei infection. Parasitol Res 104(2):429–435. https://doi.org/10.1007/s00436-008-1216-9. Erratum in: Parasitol Res. 104(2):493. Lun, Zhao-Rong [removed]

    Article  PubMed  Google Scholar 

  13. Li SQ, Fung MC, Reid SA, Inoue N, Lun ZR (2007) Immunization with recombinant beta-tubulin from Trypanosoma evansi induced protection against T. evansi, T. equiperdum and T. b. brucei infection in mice. Parasite Immunol 29(4):191–199. https://doi.org/10.1111/j.1365-3024.2006.00933.x

    Article  CAS  PubMed  Google Scholar 

  14. Lubega GW, Byarugaba DK, Prichard RK (2002) Immunization with a tubulin-rich preparation from Trypanosoma brucei confers broad protection against African trypanosomosis. Exp Parasitol 102(1):9–22

    Article  CAS  Google Scholar 

  15. Stijlemans B, Baral TN, Guilliams M, Brys L, Korf J, Drennan M, Van Den Abbeele J, De Baetselier P, Magez S (2007) A glycosylphosphatidylinositol-based treatment alleviates trypanosomiasis-associated immunopathology. J Immunol 179(6):4003–4014

    Article  CAS  Google Scholar 

  16. Radwanska M, Guirnalda P, De Trez C, Ryffel B, Black S, Magez S (2008) Trypanosomiasis-induced B cell apoptosis results in loss of protective anti-parasite antibody responses and abolishment of vaccine-induced memory responses. PLoS Pathog 4(5):e1000078. https://doi.org/10.1371/journal.ppat.1000078

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Bockstal V, Guirnalda P, Caljon G, Goenka R, Telfer JC, Frenkel D, Radwanska M, Magez S, Black SJ (2011) T. brucei infection reduces B lymphopoiesis in bone marrow and truncates compensatory splenic lymphopoiesis through transitional B-cell apoptosis. PLoS Pathog 7(6):e1002089. https://doi.org/10.1371/journal.ppat.1002089

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Cnops J, Bockstal V, De Trez C, Miquel MC, Radwanska M, Magez S (2015) Curative drug treatment of trypanosomosis leads to the restoration of B-cell lymphopoiesis and splenic B-cell compartments. Parasite Immunol 37(9):485–491. https://doi.org/10.1111/pim.12209

    Article  CAS  PubMed  Google Scholar 

  19. Cnops J, Kauffmann F, De Trez C, Baltz T, Keirsse J, Radwanska M, Muraille E, Magez S (2016) Maintenance of B cells during chronic murine Trypanosoma brucei gambiense infection. Parasite Immunol 38(10):642–647. https://doi.org/10.1111/pim.12344

    Article  CAS  PubMed  Google Scholar 

  20. Stills H Jr (2005) Adjuvants and antibody production: dispelling the myths associated with Freund’s complete and other adjuvants. ILAR J 46(3):280–293

    Article  CAS  Google Scholar 

  21. Bode C, Zhao G, Steinhagen F, Kinjo T, Klinman DM (2011) CpG DNA as a vaccine adjuvant. Expert Rev Vaccines 10(4):499–511. https://doi.org/10.1586/erv.10.174

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Harris TH, Mansfield JM, Paulnock DM (2007) CpG oligodeoxynucleotide treatment enhances innate resistance and acquired immunity to African trypanosomes. Infect Immun 75(5):2366–2373. https://doi.org/10.1128/IAI.01649-06

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Brito LA, Singh M (2011) Acceptable levels of endotoxin in vaccine formulations during preclinical research. J Pharm Sci 100(1):34–37. https://doi.org/10.1002/jps.22267

    Article  CAS  PubMed  Google Scholar 

  24. Stijlemans B, Radwanska M, De Trez C, Magez S (2017) African trypanosomes undermine humoral responses and vaccine development: link with inflammatory responses? Front Immunol 24(8):582. https://doi.org/10.3389/fimmu.2017.00582

    Article  CAS  Google Scholar 

  25. Caljon G, Van Den Abbeele J, Stijlemans B, Coosemans M, De Baetselier P, Magez S (2006) Tsetse fly saliva accelerates the onset of Trypanosoma brucei infection in a mouse model associated with a reduced host inflammatory response. Infect Immun 74(11):6324–6330. https://doi.org/10.1128/IAI.01046-06

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Caljon G, De Ridder K, De Baetselier P, Coosemans M, Van Den Abbeele J (2010) Identification of a tsetse fly salivary protein with dual inhibitory action on human platelet aggregation. PLoS One 5(3):e9671. https://doi.org/10.1371/journal.pone.0009671

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Magez S, Caljon G (2011) Mouse models for pathogenic African trypanosomes: unravelling the immunology of host-parasite-vector interactions. Parasite Immunol 33(8):423–429. https://doi.org/10.1111/j.1365-3024.2011.01293.x

    Article  CAS  PubMed  Google Scholar 

  28. Coustou V, Plazolles N, Guegan F, Baltz T (2012) Sialidases play a key role in infection and anaemia in Trypanosoma congolense animal trypanosomiasis. Cell Microbiol 14(3):431–445. https://doi.org/10.1111/j.1462-5822.2011.01730.x

    Article  CAS  PubMed  Google Scholar 

  29. Carnes J, Anupama A, Balmer O, Jackson A, Lewis M, Brown R, Cestari I, Desquesnes M, Gendrin C, Hertz-Fowler C, Imamura H, Ivens A, Kořený L, Lai DH, MacLeod A, McDermott SM, Merritt C, Monnerat S, Moon W, Myler P, Phan I, Ramasamy G, Sivam D, Lun ZR, Lukeš J, Stuart K, Schnaufer A (2015) Genome and phylogenetic analyses of Trypanosoma evansi reveal extensive similarity to T. brucei and multiple independent origins for dyskinetoplasty. PLoS Negl Trop Dis 9(1):e3404. https://doi.org/10.1371/journal.pntd.0003404

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Albright JW, Jiang D, Albright JF (1997) Innate control of the early course of infection in mice inoculated with Trypanosoma musculi. Cell Immunol 176(2):146–152

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Trypanosome vaccine research at the Magez laboratory is being supported by two grants of the FWO (Fonds voor Wetenschappelijk Onderzoek—Vlaanderen) # G015016 N and #G013518 N.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefan Magez .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Radwanska, M., Nguyen, H.T.T., Moon, S., Obishakin, E., Magez, S. (2020). Establishment of a Standardized Vaccine Protocol for the Analysis of Protective Immune Responses During Experimental Trypanosome Infections in Mice. In: Michels, P., Ginger, M., Zilberstein, D. (eds) Trypanosomatids. Methods in Molecular Biology, vol 2116. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-0294-2_42

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-0294-2_42

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-0293-5

  • Online ISBN: 978-1-0716-0294-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics