Skip to main content

Quantitative Phosphoproteomic Analysis of Legume Using TiO2-Based Enrichment Coupled with Isobaric Labeling

  • Protocol
  • First Online:
Legume Genomics

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2107))

Abstract

Phosphorylation of proteins is the most dynamic protein modification, and its analysis aids in determining the functional and regulatory principles of important cellular pathways. The legumes constitute the third largest family of higher plants, Fabaceae, comprising about 20,000 species and are second to cereals in agricultural importance on the basis of global production. Therefore, an understanding of the developmental and adaptive processes of legumes demands identification of their regulatory components. The most crucial signature of the legume family is the symbiotic nitrogen fixation, which makes this fascinating and interesting to investigate phosphorylation events. The research on protein phosphorylation in legumes has been focused primarily on two model species, Medicago truncatula and Lotus japonicus. The development of reciprocal research in other species, particularly the crops, is lagging behind which has limited its beneficial uses in agricultural productivity. In this chapter, we outline the titanium dioxide-based enrichment of phosphopeptides for nuclear proteome analysis of a grain legume, chickpea.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Silva-Sanchez C, Li H, Chen S (2015) Recent advances and challenges in plant phosphoproteomics. Proteomics 15:1127–1141

    Article  CAS  Google Scholar 

  2. Mann M, Ong SE, Grønborg M, Steen H, Jensen ON, Pandey A (2002) Analysis of protein phosphorylation using mass spectrometry: deciphering the phosphoproteome. Trends Biotechnol 20:261–268

    Article  CAS  Google Scholar 

  3. Bah A, Vernon RM, Siddiqui Z, Krzeminski M, Muhandiram R, Zhao C et al (2015) Folding of an intrinsically disordered protein by phosphorylation as a regulatory switch. Nature 519:106

    Article  CAS  Google Scholar 

  4. Houben A, Demidov D, Caperta AD, Karimi R, Agueci F, Vlasenko L (2007) Phosphorylation of histone H3 in plants-a dynamic affair. Biochim Biophys Acta 1769:308–315

    Article  CAS  Google Scholar 

  5. Li XS, Yuan BF, Feng YQ (2016) Recent advances in phosphopeptide enrichment: strategies and techniques. Trends Anal Chem 78:70–83

    Article  CAS  Google Scholar 

  6. Reiland S, Messerli G, Baerenfaller K, Gerrits B, Endler A, Grossmann J et al (2009) Large-scale Arabidopsis phosphoproteome profiling reveals novel chloroplast kinase substrates and phosphorylation networks. Plant Physiol 150:889–903

    Article  CAS  Google Scholar 

  7. Delom F, Chevet E (2006) Phosphoprotein analysis: from proteins to proteomes. Proteome Sci 4:15

    Article  Google Scholar 

  8. Meyer LJ, Gao J, Xu D, Thelen JJ (2012) Phosphoproteomic analysis of seed maturation in Arabidopsis, rapeseed, and soybean. Plant Physiol 159:517–528

    Article  CAS  Google Scholar 

  9. Gupta R, Min CW, Meng Q, Agrawal GK, Rakwal R, Kim ST (2018) Comparative phosphoproteome analysis upon ethylene and abscisic acid treatment in Glycine max leaves. Plant Physiol Biochem 130:173–180

    Article  CAS  Google Scholar 

  10. Nanjo Y, Skultety L, Ashraf Y, Komatsu S (2010) Comparative proteomic analysis of early-stage soybean seedlings responses to flooding by using gel and gel-free techniques. J Proteome Res 9:3989–4002

    Article  CAS  Google Scholar 

  11. Nguyen THN, Brechenmacher L, Aldrich J, Clauss T, Gritsenko M, Hixson K et al (2012) Quantitative phosphoproteomic analysis of soybean root hairs inoculated with Bradyrhizobium japonicum. Mol Cell Proteomics 11:1140–1155

    Article  Google Scholar 

  12. Yin X, Komatsu S (2015) Quantitative proteomics of nuclear phosphoproteins in the root tip of soybean during the initial stages of flooding stress. J Proteome 119:183–195

    Article  CAS  Google Scholar 

  13. Yin X, Sakata K, Komatsu S (2014) Phosphoproteomics reveals the effect of ethylene in soybean root under flooding stress. J Proteome Res 13:5618–5634

    Article  CAS  Google Scholar 

  14. Subba P, Barua P, Kumar R, Datta A, Soni KK, Chakraborty S, Chakraborty N (2013) Phosphoproteomic dynamics of chickpea (Cicer arietinum L.) reveals shared and distinct components of dehydration response. J Proteome Res 12:5025–5047

    Article  CAS  Google Scholar 

  15. Kumar R, Kumar A, Subba P, Gayali S, Barua P, Chakraborty S, Chakraborty N (2014) Nuclear phosphoproteome of developing chickpea seedlings (Cicer arietinum L.) and protein-kinase interaction network. J Proteome 105:58–73

    Article  CAS  Google Scholar 

  16. Barua P, Lande NV, Subba P, Gayen D, Pinto S, Keshava Prasad TS, Chakraborty S, Chakraborty N (2019) Dehydration-responsive nuclear proteome landscape of chickpea (Cicer arietinum L.) reveals phosphorylation-mediated regulation of stress response. Plant Cell Environ 42:230–244

    Article  CAS  Google Scholar 

  17. Grimsrud PA, den Os D, Wenger CD, Swaney DL, Schwartz D, Sussman MR et al (2010) Large-scale phosphoprotein analysis in Medicago truncatula roots provides insight into in vivo kinase activity in legumes. Plant Physiol 152:19–28

    Article  CAS  Google Scholar 

  18. Trapphoff T, Beutner C, Niehaus K, Colditz F (2009) Induction of distinct defense-associated protein patterns in Aphanomyces euteiches (oomycota)–elicited and–inoculated Medicago truncatula cell-suspension cultures: a proteome and phosphoproteome approach. Mol Plant-Microbe Interact 22:421–436

    Article  CAS  Google Scholar 

  19. Yang ZB, Eticha D, Führs H, Heintz D, Ayoub D, Van Dorsselaer A et al (2013) Proteomic and phosphoproteomic analysis of polyethylene glycol-induced osmotic stress in root tips of common bean (Phaseolus vulgaris L.). J Exp Bot 64:5569–5586

    Article  CAS  Google Scholar 

  20. Ino Y, Ishikawa A, Nomura A, Kajiwara H, Harada K, Hirano H (2014) Phosphoproteome analysis of Lotus japonicus seeds. Proteomics 14:116–120

    Article  CAS  Google Scholar 

  21. Sun H, Xia B, Wang X, Gao F, Zhou Y (2017) Quantitative phosphoproteomic analysis provides insight into the response to short-term drought stress in Ammopiptanthus mongolicus roots. Int J Mol Sci 18:2158

    Article  Google Scholar 

  22. Leitner A (2010) Phosphopeptide enrichment using metal oxide affinity chromatography. Trends Anal Chem 29:177–185

    Article  CAS  Google Scholar 

  23. Meng F, Forbes AJ, Miller LM, Kelleher NL (2005) Detection and localization of protein modifications by high resolution tandem mass spectrometry. Mass Spectrom Rev 24:126–134

    Article  CAS  Google Scholar 

  24. Chi A, Huttenhower C, Geer LY, Coon JJ, Syka JE, Bai DL et al (2007) Analysis of phosphorylation sites on proteins from Saccharomyces cerevisiae by electron transfer dissociation (ETD) mass spectrometry. Proc Natl Acad Sci U S A 104:2193–2198

    Article  CAS  Google Scholar 

  25. Khidekel N, Ficarro SB, Clark PM, Bryan MC, Swaney DL, Rexach JE et al (2007) Probing the dynamics of O-GlcNAc glycosylation in the brain using quantitative proteomics. Nat Chem Biol 3:339

    Article  CAS  Google Scholar 

  26. Molina H, Horn DM, Tang N, Mathivanan S, Pandey A (2007) Global proteomic profiling of phosphopeptides using electron transfer dissociation tandem mass spectrometry. Proc Natl Acad Sci U S A 104:2199–2204

    Article  CAS  Google Scholar 

  27. Wiesner J, Premsler T, Sickmann A (2008) Application of electron transfer dissociation (ETD) for the analysis of posttranslational modifications. Proteomics 8:4466–4483

    Article  CAS  Google Scholar 

  28. Chalkley RJ, Thalhammer A, Schoepfer R, Burlingame AL (2009) Identification of protein O-GlcNAcylation sites using electron transfer dissociation mass spectrometry on native peptides. Proc Natl Acad Sci U S A 106:8894–8899

    Article  CAS  Google Scholar 

  29. Mikesh LM, Ueberheide B, Chi A, Coon JJ, Syka JE, Shabanowitz HDF (2006) The utility of ETD mass spectrometry in proteomic analysis. Biochim Biophys Acta 1764:1811–1822

    Article  CAS  Google Scholar 

  30. Cantin GT, Shock TR, Park SK, Madhani HD, Yates JR (2007) Optimizing TiO2-based phosphopeptide enrichment for automated multidimensional liquid chromatography coupled to tandem mass spectrometry. Anal Chem 79:4666–4673

    Article  CAS  Google Scholar 

  31. Thingholm TE, Jørgensen TJ, Jensen ON, Larsen MR (2006) Highly selective enrichment of phosphorylated peptides using titanium dioxide. Nat Protoc 1:1929

    Article  CAS  Google Scholar 

  32. Larsen MR, Thingholm TE, Jensen ON, Roepstorff P, Jørgensen TJ (2005) Highly selective enrichment of phosphorylated peptides from peptide mixtures using titanium dioxide microcolumns. Mol Cell Proteomics 4:873–886

    Article  CAS  Google Scholar 

  33. Li QR, Ning ZB, Tang JS, Nie S, Zeng R (2009) Effect of peptide-to-TiO2 beads ratio on phosphopeptide enrichment selectivity. J Proteome Res 8:5375–5381

    Article  CAS  Google Scholar 

  34. Choudhary MK, Basu D, Datta A, Chakraborty N, Chakraborty S (2009) Dehydration-responsive nuclear proteome of rice (Oryza sativa L.) illustrates protein network, novel regulators of cellular adaptation, and evolutionary perspective. Mol Cell Proteomics 8:1579–1598

    Article  CAS  Google Scholar 

  35. Humphrey SJ, Azimifar SB, Mann M (2015) High-throughput phosphoproteomics reveals in vivo insulin signaling dynamics. Nat Biotechnol 33:990

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from the Department of Science and Technology (DST)-SERB (EMR/2015/001870), India. The authors thank Department of Biotechnology (DBT) and Council of Scientific and Industrial Research (CSIR), India for providing research fellowship to PB, NVL, and SK, respectively.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Niranjan Chakraborty .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Barua, P., Lande, N.V., Kumar, S., Chakraborty, S., Chakraborty, N. (2020). Quantitative Phosphoproteomic Analysis of Legume Using TiO2-Based Enrichment Coupled with Isobaric Labeling. In: Jain, M., Garg, R. (eds) Legume Genomics. Methods in Molecular Biology, vol 2107. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-0235-5_22

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-0235-5_22

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-0234-8

  • Online ISBN: 978-1-0716-0235-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics