Skip to main content

In Vivo RNA Chemical Footprinting Analysis in Archaea

  • Protocol
  • First Online:
RNA Chaperones

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2106))

Abstract

RNA structural conformation and dynamics govern the functional properties of all RNA/RNP. Accordingly, defining changes of RNA structure and dynamics in various conditions may provide detailed insight into how RNA structural properties regulate the function of RNA/RNP. Traditional chemical footprinting analysis using chemical modifiers allows to sample the dynamics and conformation landscape of diverse RNA/RNP. However, many chemical modifiers are limited in their capacity to provide unbiased information reflecting the in vivo RNA/RNP structural landscape. In the recent years, the development of selective-2′-hydroxyl acylation analyzed by primer extension (SHAPE) methodology that uses powerful new chemical modifiers has significantly improved in vitro and in vivo structural probing of secondary and tertiary interactions of diverse RNA species at the single nucleotide level.

Although the original discovery of Archaea as an independent domain of life is intimately linked to the technological development of RNA analysis, our understanding of in vivo RNA structural conformation and dynamics in this domain of life remains scarce.

This protocol describes the in vivo use of SHAPE chemistry in two evolutionary divergent model Archaea, Sulfolobus acidocaldarius and Haloferax volcanii.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kubota M, Chan D, Spitale RC (2015) RNA structure: merging chemistry and genomics for a holistic perspective. BioEssays 37:1129–1138. https://doi.org/10.1002/bies.201300146

    Article  CAS  PubMed  Google Scholar 

  2. Mauger DM, Weeks KM (2010) Toward global RNA structure analysis. Nat Biotechnol 28:1178–1179. https://doi.org/10.1038/nbt1110-1178

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Strobel EJ, Yu AM, Lucks JB (2018) High-throughput determination of RNA structures. Nat Rev Genet 19:615–634. https://doi.org/10.1038/s41576-018-0034-x

    Article  CAS  PubMed  Google Scholar 

  4. Bevilacqua PC, Assmann SM (2018) Technique development for probing RNA structure in vivo and genome-wide. Cold Spring Harb Perspect Biol 10. https://doi.org/10.1101/cshperspect.a032250

  5. Hartmann RK, Bindereif A, Schön A, Westhof E (2013) Handbook of RNA biochemistry. http://public.eblib.com/choice/publicfullrecord.aspx?p=2008065

  6. Hulscher RM, Bohon J, Rappé MC et al (2016) Probing the structure of ribosome assembly intermediates in vivo using DMS and hydroxyl radical footprinting. Adv RNA Struct Determ 103:49–56. https://doi.org/10.1016/j.ymeth.2016.03.012

    Article  CAS  Google Scholar 

  7. Smola MJ, Calabrese JM, Weeks KM (2015) Detection of RNA-protein interactions in living cells with SHAPE. Biochemistry 54:6867–6875. https://doi.org/10.1021/acs.biochem.5b00977

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Spitale RC, Flynn RA, Torre EA et al (2014) RNA structural analysis by evolving SHAPE chemistry. Wiley Interdiscip Rev RNA 5:867–881. https://doi.org/10.1002/wrna.1253

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Felden B (2007) RNA structure: experimental analysis. Curr Opin Microbiol 10:286–291. https://doi.org/10.1016/j.mib.2007.05.001

    Article  CAS  PubMed  Google Scholar 

  10. Weeks KM (2010) Advances in RNA structure analysis by chemical probing. Nucleic Acids Seq Topol 20:295–304. https://doi.org/10.1016/j.sbi.2010.04.001

    Article  CAS  Google Scholar 

  11. Ohmayer U, Perez-Fernandez J, Hierlmeier T et al (2012) Local tertiary structure probing of ribonucleoprotein particles by nuclease fusion proteins. PLoS One 7:e42449. https://doi.org/10.1371/journal.pone.0042449

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Mortimer SA, Weeks KM (2008) Time-resolved RNA SHAPE chemistry. J Am Chem Soc 130:16178–16180. https://doi.org/10.1021/ja8061216

    Article  CAS  PubMed  Google Scholar 

  13. Smola MJ, Weeks KM (2018) In-cell RNA structure probing with SHAPE-MaP. Nat Protoc 13:1181

    Article  CAS  Google Scholar 

  14. Spitale RC, Crisalli P, Flynn RA et al (2013) RNA SHAPE analysis in living cells. Nat Chem Biol 9:18–20. https://doi.org/10.1038/nchembio.1131

    Article  CAS  PubMed  Google Scholar 

  15. Albers S-V, Forterre P, Prangishvili D, Schleper C (2013) The legacy of Carl Woese and Wolfram Zillig: from phylogeny to landmark discoveries. Nat Rev Microbiol 11:713–719

    Article  CAS  Google Scholar 

  16. Eme L, Doolittle WF (2015) Archaea. Curr Biol 25:R851–R855. https://doi.org/10.1016/j.cub.2015.05.025

    Article  CAS  PubMed  Google Scholar 

  17. Leigh JA, Albers S-V, Atomi H, Allers T (2011) Model organisms for genetics in the domain Archaea: methanogens, halophiles, Thermococcales and Sulfolobales. FEMS Microbiol Rev 35:577–608. https://doi.org/10.1111/j.1574-6976.2011.00265.x

    Article  CAS  PubMed  Google Scholar 

  18. Raddadi N, Cherif A, Daffonchio D et al (2015) Biotechnological applications of extremophiles, extremozymes and extremolytes. Appl Microbiol Biotechnol 99:7907–7913. https://doi.org/10.1007/s00253-015-6874-9

    Article  CAS  PubMed  Google Scholar 

  19. Spang A, Caceres EF, Ettema TJG (2017) Genomic exploration of the diversity, ecology, and evolution of the archaeal domain of life. Science 357:eaaf3883. https://doi.org/10.1126/science.aaf3883

    Article  CAS  Google Scholar 

  20. Zeldes BM, Straub CT, Counts JA et al (2018) Biotechnology of extremely thermophilic archaea. FEMS Microbiol Rev 42:543–578. https://doi.org/10.1093/femsre/fuy012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Adam PS, Borrel G, Brochier-Armanet C, Gribaldo S (2017) The growing tree of Archaea: new perspectives on their diversity, evolution and ecology. ISME J 11:2407–2425. https://doi.org/10.1038/ismej.2017.122

    Article  PubMed  PubMed Central  Google Scholar 

  22. Offre P, Spang A, Schleper C (2013) Archaea in biogeochemical cycles. Annu Rev Microbiol 67:437–457. https://doi.org/10.1146/annurev-micro-092412-155614

    Article  CAS  PubMed  Google Scholar 

  23. Jun S-H, Reichlen MJ, Tajiri M, Murakami KS (2011) Archaeal RNA polymerase and transcription regulation. Crit Rev Biochem Mol Biol 46:27–40. https://doi.org/10.3109/10409238.2010.538662

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Lake JA (2015) Eukaryotic origins. Philos Trans R Soc B Biol Sci 370. https://doi.org/10.1098/rstb.2014.0321

  25. Allers T, Mevarech M (2005) Archaeal genetics—the third way. Nat Rev Genet 6:58–73. https://doi.org/10.1038/nrg1504

    Article  CAS  PubMed  Google Scholar 

  26. Allers T, Ngo H-P, Mevarech M, Lloyd RG (2004) Development of additional selectable markers for the halophilic archaeon Haloferax volcanii based on the leuB and trpA genes. Appl Environ Microbiol 70:943–953. https://doi.org/10.1128/AEM.70.2.943-953.2004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Wagner M, van Wolferen M, Wagner A et al (2012) Versatile genetic tool box for the crenarchaeote Sulfolobus acidocaldarius. Front Microbiol 3:214. https://doi.org/10.3389/fmicb.2012.00214

    Article  PubMed  PubMed Central  Google Scholar 

  28. Knüppel R, Kuttenberger C, Ferreira-Cerca S (2017) Towards time-resolved analysis of RNA metabolism in archaea using 4-thiouracil. Front Microbiol 8:286. https://doi.org/10.3389/fmicb.2017.00286

    Article  PubMed  PubMed Central  Google Scholar 

  29. Cannone JJ, Subramanian S, Schnare MN et al (2002) The comparative RNA web (CRW) site: an online database of comparative sequence and structure information for ribosomal, intron, and other RNAs. BMC Bioinformatics 3:2–2. https://doi.org/10.1186/1471-2105-3-2

    Article  PubMed  PubMed Central  Google Scholar 

  30. Armache J-P, Anger AM, Márquez V et al (2013) Promiscuous behaviour of archaeal ribosomal proteins: implications for eukaryotic ribosome evolution. Nucleic Acids Res 41:1284–1293. https://doi.org/10.1093/nar/gks1259

    Article  CAS  PubMed  Google Scholar 

  31. Lee B, Flynn RA, Kadina A et al (2017) Comparison of SHAPE reagents for mapping RNA structures inside living cells. RNA 23:169–174. https://doi.org/10.1261/rna.058784.116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. McGinnis JL, Weeks KM (2014) Ribosome RNA assembly intermediates visualized in living cells. Biochemistry 53:3237–3247. https://doi.org/10.1021/bi500198b

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. McGinnis JL, Liu Q, Lavender CA et al (2015) In-cell SHAPE reveals that free 30S ribosome subunits are in the inactive state. Proc Natl Acad Sci U S A 112:2425–2430. https://doi.org/10.1073/pnas.1411514112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Burlacu E, Lackmann F, Aguilar L-C et al (2017) High-throughput RNA structure probing reveals critical folding events during early 60S ribosome assembly in yeast. Nat Commun 8:714–714. https://doi.org/10.1038/s41467-017-00761-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Hector RD, Burlacu E, Aitken S et al (2014) Snapshots of pre-rRNA structural flexibility reveal eukaryotic 40S assembly dynamics at nucleotide resolution. Nucleic Acids Res 42:12138–12154. https://doi.org/10.1093/nar/gku815

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. McGinnis JL, Dunkle JA, Cate JHD, Weeks KM (2012) The mechanisms of RNA SHAPE chemistry. J Am Chem Soc 134:6617–6624. https://doi.org/10.1021/ja2104075

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Mizusawa S, Nishimura S, Seela F (1986) Improvement of the dideoxy chain termination method of DNA sequencing by use of deoxy-7-deazaguanosine triphosphate in place of dGTP. Nucleic Acids Res 14:1319–1324

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We are grateful to Dr. Tilman Heise (University of Regensburg) for comments and suggestions. We would like to thank our colleagues from the Chair of Biochemistry III and Biochemistry I for sharing materials, equipment, and discussion. Thanks to Prof. Dr. Sonja-Verena Albers (University of Freiburg) and Prof. Dr. Thorsten Allers (University of Nottingham) for sharing strains and protocols. Work in the Ferreira-Cerca laboratory is supported by the Chair of Biochemistry III “House of the Ribosome”-University of Regensburg, by the DFG-funded collaborative research center CRC/SFB960 “RNP Biogenesis: Assembly of Ribosomes and Non-ribosomal RNPs and Control of Their Function” (project AP1/B13), and by an individual DFG grant to S.F.-C. (FE1622/2-1 Project Nr. 409198929).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sébastien Ferreira-Cerca .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Knüppel, R., Fenk, M., Jüttner, M., Ferreira-Cerca, S. (2020). In Vivo RNA Chemical Footprinting Analysis in Archaea. In: Heise, T. (eds) RNA Chaperones. Methods in Molecular Biology, vol 2106. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-0231-7_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-0231-7_12

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-0230-0

  • Online ISBN: 978-1-0716-0231-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics