Skip to main content

Intraparticle pH Sensing Within Immobilized Enzymes: Immobilized Yellow Fluorescent Protein as Optical Sensor for Spatiotemporal Mapping of pH Inside Porous Particles

  • Protocol
  • First Online:
Immobilization of Enzymes and Cells

Abstract

pH is a fundamental variable in enzyme catalysis and its measurement therefore is crucial for understanding and optimizing enzyme-catalyzed reactions. Whereas measurements within homogeneous bulk liquid solution are prominently used, enzymes immobilized inside porous particles often suffer from pH gradients due to partition effects and heterogeneously catalyzed biochemical reactions. Unfortunately, the measurements of intraparticle pH are not available due to the lack of useful suitable methodologies; as a consequence the biocatalyst characterization is hampered. Here, a fully biocompatible methodology for real-time optical sensing of pH within porous materials is described. A genetically encoded ratiometric pH indicator, the superfolder yellow fluorescent protein (sYFP), is used to functionalize the internal surface of enzyme carrier supports. By using controlled, tailor-made immobilization, sYFP is homogeneously distributed within these materials, and so enables, via self-referenced imaging analysis, pH measurements in high accuracy and with useful spatiotemporal resolution. The hydrolysis of penicillin by a penicillin acylase, taking place in solution or confined to the solid surface of the porous matrix is used to show the monitoring of evolution of internal pH. Thus, pH sensing based on immobilized sYFP represents a broadly applicable technique to the study of the internally heterogeneous environment of immobilized enzymes into solid particles.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bolivar JM, Consolati T, Mayr T, Nidetzky B (2013) Shine a light on immobilized enzymes: real-time sensing in solid supported biocatalysts. Trends Biotechnol 31:194–203. https://doi.org/10.1016/j.tibtech.2013.01.004

    Article  CAS  PubMed  Google Scholar 

  2. Benítez-Mateos AI, Nidetzky B, Bolivar JM, López-Gallego F (2018) Single-particle studies to advance the characterization of heterogeneous biocatalysts. ChemCatChem 10:654–665. https://doi.org/10.1002/cctc.201701590

    Article  CAS  Google Scholar 

  3. Bolivar JM, Eisl I, Nidetzky B (2016) Advanced characterization of immobilized enzymes as heterogeneous biocatalysts. Catal Today 259:66–80. https://doi.org/10.1016/j.cattod.2015.05.004

    Article  CAS  Google Scholar 

  4. Casey JR, Grinstein S, Orlowski J (2010) Sensors and regulators of intracellular pH. Nat Rev Mol Cell Biol 11:50–61. https://doi.org/10.1038/nrm2820

    Article  CAS  PubMed  Google Scholar 

  5. Yang Z, Cao J, He Y et al (2014) Macro−/micro-environment-sensitive chemosensing and biological imaging. Chem Soc Rev 43:4563–4601. https://doi.org/10.1039/c4cs00051j

    Article  CAS  PubMed  Google Scholar 

  6. Yamaguchi A, Namekawa M, Kamijo T et al (2011) Acid−base equilibria inside amine-functionalized mesoporous silica. Anal Chem 83:2939–2946. https://doi.org/10.1021/ac102935q

    Article  CAS  PubMed  Google Scholar 

  7. Sun X, Xie J, Xu J et al (2015) Single-molecule studies of acidity distributions in mesoporous aluminosilicate thin films. Langmuir 31:5667–5675. https://doi.org/10.1021/acs.langmuir.5b01628

    Article  CAS  PubMed  Google Scholar 

  8. Begemann J, Spiess AC (2015) Dual lifetime referencing enables pH-control for oxidoreductions in hydrogel-stabilized biphasic reaction systems. Biotechnol J 10:1822–1829. https://doi.org/10.1002/biot.201500198

    Article  CAS  PubMed  Google Scholar 

  9. Huang HY, Shaw J, Yip C, Wu XY (2008) Microdomain pH gradient and kinetics inside composite polymeric membranes of pH and glucose sensitivity. Pharm Res 25:1150–1157

    Article  CAS  Google Scholar 

  10. Boniello C, Mayr T, Klimant I et al (2010) Intraparticle concentration gradients for substrate and acidic product in immobilized cephalosporin C amidase and their dependencies on carrier characteristics and reaction parameters. Biotechnol Bioeng 106:528–540. https://doi.org/10.1002/bit.22694

    Article  CAS  PubMed  Google Scholar 

  11. Zahel T, Boniello C, Nidetzky B (2013) Real-time measurement and modeling of intraparticle pH gradient formation in immobilized cephalosporin C amidase. Process Biochem 48:593–604

    Article  CAS  Google Scholar 

  12. Spiess A, Schlothauer R, Hinrichs J et al (1999) pH gradients in immobilized amidases and their influence on rates and yields of beta-lactam hydrolysis. Biotechnol Bioeng 62:267–277

    Article  CAS  Google Scholar 

  13. Spiess AC, Kasche V (2001) Direct measurement of pH profiles in immobilized enzyme carriers during kinetically controlled synthesis using CLSM. Biotechnol Prog 17:294–303. https://doi.org/10.1021/bp000149e

    Article  CAS  PubMed  Google Scholar 

  14. Wencel D, Abel T, McDonagh C (2014) Optical chemical pH sensors. Anal Chem 86:15–29. https://doi.org/10.1021/ac4035168

    Article  CAS  PubMed  Google Scholar 

  15. Barczak M, McDonagh C, Wencel D (2016) Micro- and nanostructured sol-gel-based materials for optical chemical sensing (2005–2015). Microchim Acta 183:2085–2109. https://doi.org/10.1007/s00604-016-1863-y

    Article  CAS  Google Scholar 

  16. Luo H, Zhu L, Chang Y et al (2017) Microenvironmental pH changes in immobilized cephalosporin C acylase during a proton-producing reaction and regulation by a two-stage catalytic process. Bioresour Technol 223:157–165. https://doi.org/10.1016/j.biortech.2016.10.038

    Article  CAS  PubMed  Google Scholar 

  17. Boniello C, Mayr T, Bolivar JM, Nidetzky B (2012) Dual-lifetime referencing (DLR): a powerful method for on-line measurement of internal pH in carrier-bound immobilized biocatalysts. BMC Biotechnol 12:11. https://doi.org/10.1186/1472-6750-12-11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Kuwana E, Liang F, Sevick-Muraca EM (2004) Fluorescence lifetime spectroscopy of a pH-sensitive dye encapsulated in hydrogel beads. Biotechnol Prog 20:1561–1566

    Article  CAS  Google Scholar 

  19. Schwendt T, Michalik C, Zavrel M et al (2010) Determination of temporal and spatial concentration gradients in hydrogel beads using multiphoton microscopy techniques. Appl Spectrosc 64:720–726

    Article  CAS  Google Scholar 

  20. Zavrel M, Michalik C, Schwendt T et al (2010) Systematic determination of intrinsic reaction parameters in enzyme immobilizates. Chem Eng Sci 65:2491–2499. https://doi.org/10.1016/j.ces.2009.12.026

    Article  CAS  Google Scholar 

  21. Consolati T, Bolivar JM, Petrasek Z et al (2018) Biobased, internally pH-sensitive materials: immobilized yellow fluorescent protein as an optical sensor for spatiotemporal mapping of pH inside porous matrices. ACS Appl Mater Interfaces 10:6858–6868. https://doi.org/10.1021/acsami.7b16639

    Article  CAS  PubMed  Google Scholar 

  22. Pédelacq J-D, Cabantous S, Tran T et al (2006) Engineering and characterization of a superfolder green fluorescent protein. Nat Biotechnol 24:79–88. https://doi.org/10.1038/nbt1172

    Article  CAS  PubMed  Google Scholar 

  23. Aliye N, Fabbretti A, Lupidi G et al (2015) Engineering color variants of green fluorescent protein (GFP) for thermostability, pH-sensitivity, and improved folding kinetics. Appl Microbiol Biotechnol 99:1205–1216. https://doi.org/10.1007/s00253-014-5975-1

    Article  CAS  PubMed  Google Scholar 

  24. Mateo C, Grazu V, Guisan JM (2013) Immobilization of enzymes on monofunctional and heterofunctional epoxy-activated supports. In: Guisan JM (ed) Immobilization of enzymes and cells. Humana Press, Totowa, NJ, pp 43–57

    Chapter  Google Scholar 

  25. López-Gallego F, Fernandez-Lorente G, Rocha-Martin J et al (2013) Stabilization of enzymes by multipoint covalent immobilization on supports activated with glyoxyl groups. In: Guisan JM (ed) Immobilization of enzymes and cells. Humana Press, Totowa, NJ, pp 59–71

    Chapter  Google Scholar 

  26. Valencia P, Wilson L, Aguirre C, Illanes A (2010) Evaluation of the incidence of diffusional restrictions on the enzymatic reactions of hydrolysis of penicillin G and synthesis of cephalexin. Enzym Microb Technol 47:268–276. https://doi.org/10.1016/j.enzmictec.2010.07.010

    Article  CAS  Google Scholar 

  27. Alvaro G, Fernandez-Lafuente R, Blanco RM, Guisán JM (1990) Immobilization-stabilization of penicillin G acylase from Escherichia coli. Appl Biochem Biotechnol 26:181–195

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bernd Nidetzky .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Consolati, T. et al. (2020). Intraparticle pH Sensing Within Immobilized Enzymes: Immobilized Yellow Fluorescent Protein as Optical Sensor for Spatiotemporal Mapping of pH Inside Porous Particles. In: Guisan, J., Bolivar, J., López-Gallego, F., Rocha-Martín, J. (eds) Immobilization of Enzymes and Cells. Methods in Molecular Biology, vol 2100. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-0215-7_21

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-0215-7_21

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-0214-0

  • Online ISBN: 978-1-0716-0215-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics